Skip to main content

Multi-modal Biometric Emotion Recognition Using Classifier Ensembles

  • Conference paper
Modern Approaches in Applied Intelligence (IEA/AIE 2011)

Abstract

We introduce a system called AMBER (Advanced Multi-modal Biometric Emotion Recognition), which combines Electroencephalography (EEG) with Electro Dermal Activity (EDA) and pulse sensors to provide low cost, portable real-time emotion recognition. A single-subject pilot experiment was carried out to evaluate the ability of the system to distinguish between positive and negative states of mind provoked by audio stimuli. Eight single classifiers and six ensemble classifiers were compared using Weka. All ensemble classifiers outperformed the single classifiers, with Bagging, Rotation Forest and Random Subspace showing the highest overall accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boss, D.O.: EEG-based emotion recognition (2006), http://emi.uwi.utwente.nl/-verslagen/capita-selecta/CS-oude=Bos-Danny

  2. Chanel, G., Kronegg, J., Grandjean, D., Pun, T.: Emotion assessment: Arousal evaluation using eEG’s and peripheral physiological signals. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 530–537. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebela, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 43(1), 44–58 (2008)

    Article  Google Scholar 

  4. Hardoon, D.R., Mourao-Miranda, J., Brammer, M., Shawe-Taylor, J.: Unsupervised analysis of fMRI data using kernel canonical correlation. NeuroImage 37(4), 1250–1259 (2007)

    Article  Google Scholar 

  5. Ko, K., Yang, H., Sim, K.: Emotion recognition using EEG signals with relative power values and Bayesian network. International Journal of Control, Automation, and Systems 7, 865–870 (2009)

    Article  Google Scholar 

  6. Kuncheva, L.I.: Combining Pattern Classifiers. Methods and Algorithms. John Wiley and Sons, N.Y (2004)

    Book  MATH  Google Scholar 

  7. Kuncheva, L.I., Rodríguez, J.J.: Classifier ensembles for fMRI data analysis: An experiment. Magnetic Resonance Imaging 28(4), 583–593 (2010)

    Article  Google Scholar 

  8. Kuncheva, L.I., Rodriguez, J.J., Plumpton, C.O., Linden, D.E.J., Johnston, S.J.: Random subspace ensembles for fMRI classification. IEEE Transactions on Medical Imaging 29(2), 531–542 (2010)

    Article  Google Scholar 

  9. Liao, W., Zhang, W., Zhu, Z., Ji, Q.: A decision theoretic model for stress recognition and user assistance. In: Proceedings of the National Conference on Artificial Intellegence, vol. 20, PART 2, pp. 529–534 (2005)

    Google Scholar 

  10. Liao, W., Zhang, W., Zhu, Z., Ji, Q., Gray, W.D.: Towards a decision-theoretic framework for affect recognition and user assistance. International Journal of Man-Machine Studies 64(9), 847–873 (2006)

    Google Scholar 

  11. Mourao-Miranda, J., Bokde, A.L.W., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional mri data. NeuroImage 28(4), 980–995 (2005)

    Article  Google Scholar 

  12. Nakasone, A., Prendinger, H., Ishizuka, M.: Emotion recognition from electromyography and skin conductance. In: Proc. of the 5th International Workshop on Biosignal Interpretation, pp. 219–222 (2005)

    Google Scholar 

  13. Petrantonakis, P., Hadjileontiadis, L.: Emotion recognition from EEG using higher-order crossings. IEEE Transactions on Information Technology in Biomedicine 14(2), 186–197 (2010)

    Article  Google Scholar 

  14. Picard, R.W.: Affective computing. Technical Report 321, M.I.T Media Laboratory Perceptual Computing Section (1995)

    Google Scholar 

  15. Picard, R.W.: Emotion research by the people, for the people. Emotion Review (2010) (to appear)

    Google Scholar 

  16. Rebolledo-Mendez, G., Dunwell, I., Martínez-Mirón, E.A., Vargas-Cerdán, M.D., de Freitas, S., Liarokapis, F., García-Gaona, A.R.: Assessing neuroSky’s usability to detect attention levels in an assessment exercise. In: Jacko, J.A. (ed.) HCI International 2009. LNCS, vol. 5610, pp. 149–158. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Rodríguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  18. Sato, J.R., Fujita, A., Thomaz, C.E., Martin, M.G.M., Mourao-Miranda, J., Brammer, M.J., Amaro Junior, E.: Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction. NeuroImage 46, 105–114 (2009)

    Article  Google Scholar 

  19. Sherwood, J., Derakhshani, R.: On classifiability of wavelet features for eeg-based brain-computer interfaces. In: Proceedings of the 2009 International Joint Conference on Neural Networks, pp. 2508–2515 (2009)

    Google Scholar 

  20. Takahashi, K.: Remarks on emotion recognition from biopotential signals. In: 2nd International Conference on Autonomous Robots and Agents, pp. 186–191 (2004)

    Google Scholar 

  21. van Gerven, M., Farquhar, J., Schaefer, R., Vlek, R., Geuze, J., Nijholt, A., Ramsey, N., Haselager, P., Vuurpijl, L., Gielen, S., Desain, P.: The brain-computer interface cycle. Journal of Neural Engineering 6(4), 41001 (2009)

    Article  Google Scholar 

  22. Wang, Z., Childress, A.R., Wang, J., Detre, J.A.: Support vector machine learning-based fMRI data group analysis. NeuroImage 36(4), 1139–1151 (2007)

    Article  Google Scholar 

  23. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  24. Yasui, Y.: A brainwave signal measurement and data processing technique for daily life applications. Journal Of Physiological Anthropology 38(3), 145–150 (2009)

    Article  Google Scholar 

  25. Yazicioglu, R.F., Torfs, T., Merken, P., Penders, J., Leonov, V., Puers, R., Gyselinckx, B., Hoof, C.V.: Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectronics Journal 40(9), 1313–1321 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuncheva, L.I., Christy, T., Pierce, I., Mansoor, S.P. (2011). Multi-modal Biometric Emotion Recognition Using Classifier Ensembles. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds) Modern Approaches in Applied Intelligence. IEA/AIE 2011. Lecture Notes in Computer Science(), vol 6703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21822-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21822-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21821-7

  • Online ISBN: 978-3-642-21822-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics