Skip to main content

Prediction of Drug Activity Using Molecular Fragments-Based Representation and RFE Support Vector Machine Algorithm

  • Conference paper
Modern Approaches in Applied Intelligence (IEA/AIE 2011)

Abstract

This paper describes the use of a support vector machine algorithm for the classification of molecules database in order for the prediction of the activity of drugs. Molecules database are fragmented, and each molecule is represented by a set of contained fragments. Molecular weighted descriptors are tested for the representation of molecular fragments in order to represent the dataset as a MxF array where each element takes the value of the molecular weighted descriptor calculated for the fragment. As weighted descriptors take into account distances and heteroatoms present in the fragments, the representation space allows the discrimination of similar structural fragments. A Support Vector Machine algorithm is used for the classification process for a training set. Prediction of the activity of the test set is carried out in function of results of training stage and the application of a proposed heuristic. Results obtained shows that the use of weighted molecular descriptors improves the prediction of drug activity for heterogeneous datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghuloum, A.M., Sage, C.R., Jain, A.N.: Molecular Hashkeys: A Novel Method for Molecular Characterization and Its Application for Predicting Important Pharmaceutical Properties of Molecules. Journal of Medicinal Chemistry 42(10), 1739–1748 (1999)

    Article  Google Scholar 

  2. Cross, S., Baroni, M., Carosati, E., Benedetti, P., Clementi, S.: FLAP: GRID Molecular Interaction Fields in Virtual Screening. Validation using the DUD Data Set. J. Chem. Inf. Model. 50(8), 1442–1450 (2010)

    Article  Google Scholar 

  3. Culp, M., Johnson, K., Michailidis, G.: The Ensemble Bridge Algorithm: A New Modeling Tool for Drug Discovery Problems. J. Chem. Inf. Model. 50(2), 309–316 (2010)

    Article  Google Scholar 

  4. Luque Ruiz, I., Cerruela García, G., Gómez-Nieto, M.A.: Representation of the Molecular Topology of Cyclical Structures by Means of Cycle Graphs. 3. Hierarchical Model of Screening of Chemical Databases. J. Chem. Inf. Comput. Sci. 44, 1903–1911 (2004)

    Article  Google Scholar 

  5. Sun, H.: An Accurate and Interpretable Bayesian Classification Model for Prediction of hERG Liability. Chem. Med. Chem. 1(3), 315–322 (2006)

    Article  Google Scholar 

  6. Zhou, J., Augelli-Szafran, C.E., Bradley, J.A., Chen, X., Koci, B.J.: Novel Potent hERG Potassium Channel Enhancers And Their In Vitro Antiarrhythmic Activity. Molecular Pharmacology 68(3), 876–884 (2005)

    Google Scholar 

  7. Chen, W.-h., Wang, W.-y., Zhang, J., Yang, D., Wang, Y.-p.: State-dependent blockade of human ether-a-go-go-related gene (hERG) K +  channels by changrolin in stably transfected HEK293 cells. Acta Pharmacologica Sinica 31, 915–922 (2010)

    Article  Google Scholar 

  8. Bayada, D.M., Hamersma, H., van Geerestein, V.J.: Molecular diversity and representativity in chemical databases. J. Chem. Inf. Comput. Sci. 39, 1–10 (1999)

    Article  Google Scholar 

  9. Furlanello, C., Serafini, M., Merler, S., Jurman, G.: An accelerated procedure for recursive feature ranking on microarray data. Neural Networks 16, 641–648 (2003)

    Article  Google Scholar 

  10. García-Pedrajas, N., Ortiz-Boyer, D.: A cooperative constructive method for neural networks for pattern recognition. Pattern Recognition 40(1), 80–99 (2007)

    Article  MATH  Google Scholar 

  11. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  12. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  13. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 127–167 (1998)

    Article  Google Scholar 

  14. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH (2000)

    Google Scholar 

  15. JChem 5.4.0.0, ChemAxon (2010), http://www.chemaxon.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cerruela García, G., Luque Ruiz, I., Ángel Gómez-Nieto, M. (2011). Prediction of Drug Activity Using Molecular Fragments-Based Representation and RFE Support Vector Machine Algorithm. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds) Modern Approaches in Applied Intelligence. IEA/AIE 2011. Lecture Notes in Computer Science(), vol 6704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21827-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21827-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21826-2

  • Online ISBN: 978-3-642-21827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics