Skip to main content

Finding P–Maps and I–Maps to Represent Conditional Independencies

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2011)

Abstract

The representation problem of independence models is studied by focusing on acyclic directed graph (DAG). We present the algorithm PC* in order to look for a perfect map. However, when a perfect map does not exist, so that PC* fails, it is interesting to find a minimal I–map, which represents as many triples as possible in J *. Therefore we describe an algorithm which finds such a map by means of a backtracking procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baioletti, M., Busanello, G., Vantaggi, B.: Algorithms for the closure of graphoid structures. In: Proc. of 12th Inter. Conf. IPMU 2008, Malaga, pp. 930–937 (2008)

    Google Scholar 

  2. Baioletti, M., Busanello, G., Vantaggi, B.: Conditional independence structure and its closure: Inferential rules and algorithms. Int. J. Approx. Reasoning 50, 1097–1114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baioletti, M., Busanello, G., Vantaggi, B.: Acyclic directed graphs to represent conditional independence models. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 530–541. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Baioletti, M., Busanello, G., Vantaggi, B.: An algorithm to find a perfect map for graphoid structures Proc. of 13th Inter. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. Communications in Computer and Information Science, vol. 80, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Baioletti, M., Busanello, G., Vantaggi, B.: Acyclic directed graphs representing independence models. Int. J. Approx. Reasoning 52, 2–18 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouckaert, R.R., Studený, M.: Racing algorithms for conditional independence inference. Int. J. Approx. Reasoning 45, 386–401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and Expert Systems. Springer, New York (1999)

    MATH  Google Scholar 

  8. Jensen, F.V., Lauritzen, S.L.: Probabilistic networks Handbook of Defeasible Reasoning and Uncertainty Management Systems. Kluwer Academic Publishers, Netherlands (2000)

    Google Scholar 

  9. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  10. Lauritzen, S.L.: Graphical models. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  11. Meek, C.: Causal inference and causal exploration with background knowledge. In: 11th Conf. in Uncertainty in Artificial Intelligence, UAI 1995, pp. 403–410 (1995)

    Google Scholar 

  12. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, Los Altos (1988)

    MATH  Google Scholar 

  13. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Pearl, J., Verma, T.: An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation. In: 8th Conf. in Uncertainty in Artificial Intelligence, UAI 1992, pp. 323–330 (1992)

    Google Scholar 

  15. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  16. Studený, M.: Semigraphoids and structures of probabilistic conditional independence. Ann. Math. Artif. Intell. 21, 71–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Studený, M.: Probabilistic Conditional Independence Structures. Springer, London (2005)

    MATH  Google Scholar 

  18. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max–min hill–climbing Bayesian network structure learning algorithm. Machine Learning 65, 31–78 (2006)

    Article  Google Scholar 

  19. Wong, S.K.M., Butz, C.J., Wu, D.: On the Implication Problem for Probabilistic Conditional Independency. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 30(6), 785–805 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baioletti, M., Busanello, G., Vantaggi, B. (2011). Finding P–Maps and I–Maps to Represent Conditional Independencies. In: Liu, W. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2011. Lecture Notes in Computer Science(), vol 6717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22152-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22152-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22151-4

  • Online ISBN: 978-3-642-22152-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics