Skip to main content

Classification of MHC I Proteins According to Their Ligand-Type Specificity

  • Conference paper
Artificial Immune Systems (ICARIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6825))

Included in the following conference series:

Abstract

Major histocompatibility complex class I (MHC I) molecules belong to a large and diverse protein superfamily whose families can be divided in three groups according to the type of ligands that they can accommodate (ligand-type specificity): peptides, lipids or none. Here, we assembled a dataset of MHC I proteins of known ligand-type specificity (MHCI556 dataset) and trained k-nearest neighbor and support vector machine algorithms. In cross-validation, the resulting classifiers predicted the ligand-type specificity of MHC I molecules with an accuracy ≥ 99%, using solely their amino acid composition. By holding out entire MHC I families prior to model building, we proved that ML-based classifiers trained on amino acid composition are capable of predicting the ligand-type specificity of MHC I molecules unrelated to those used for model building. Moreover, they are superior to BLAST at predicting the class of MHC I molecules that do not bind any ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maenaka, K., Jones, E.Y.: MHC superfamily structure and the immune system. Curr. Opin. Struct. Biol. 9, 745–753 (1999)

    Article  Google Scholar 

  2. Townsend, A., Bodmer, H.: Antigen recognition by class I-restricted T lymphocytes. Annual Review of Immunology 7, 601–624 (1989)

    Article  Google Scholar 

  3. Braud, V.M., Allan, D.S., McMichael, A.J.: Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr. Opin. Immunol. 11, 100–108 (1999)

    Article  Google Scholar 

  4. Clements, C.S., Kjer-Nielsen, L., Kostenko, L., Hoare, H.L., Dunstone, M.A., Moses, E., Freed, K., Brooks, A.G., Rossjohn, J., McCluskey, J.: Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc. Natl. Acad. Sci. USA 102, 3360–3365 (2005)

    Article  Google Scholar 

  5. He, X., Tabaczewski, P., Ho, J., Stroynowski, I., Garcia, K.C.: Promiscuous antigen presentation by the nonclassical MHC Ib Qa-2 is enabled by a shallow, hydrophobic groove and self-stabilized peptide conformation. Structure 9, 1213–1224 (2001)

    Article  Google Scholar 

  6. Lu, L., Werneck, M.B., Cantor, H.: The immunoregulatory effects of Qa-1. Immunological Reviews 212, 51–59 (2006)

    Article  Google Scholar 

  7. Hoare, H.L., Sullivan, L.C., Pietra, G., Clements, C.S., Lee, E.J., Ely, L.K., Beddoe, T., Falco, M., Kjer-Nielsen, L., Reid, H.H., McCluskey, J., Moretta, L., Rossjohn, J., Brooks, A.G.: Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat. Immunol. 7, 256–264 (2006)

    Article  Google Scholar 

  8. Rodgers, J.R., Cook, R.G.: MHC class Ib molecules bridge innate and acquired immunity. Nature Reviews Immunology 5, 459–471 (2005)

    Article  Google Scholar 

  9. Barral, D.C., Brenner, M.B.: CD1 antigen presentation: how it works. Nature Reviews Immunology 7, 929–941 (2007)

    Article  Google Scholar 

  10. Kennedy, M.W., Heikema, A.P., Cooper, A., Bjorkman, P.J., Sanchez, L.M.: Hydrophobic ligand binding by Zn-alpha 2-glycoprotein, a soluble fat-depleting factor related to major histocompatibility complex proteins. The Journal of Biological Chemistry 276, 35008–35013 (2001)

    Article  Google Scholar 

  11. Esmon, C.T.: The endothelial protein C receptor. Current Opinion in Hematology 13, 382–385 (2006)

    Article  Google Scholar 

  12. Sanchez, L.M., Chirino, A.J., Bjorkman, P.: Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules. Science 283, 1914–1919 (1999)

    Article  Google Scholar 

  13. Oganesyan, V., Oganesyan, N., Terzyan, S., Qu, D., Dauter, Z., Esmon, N.L., Esmon, C.T.: The crystal structure of the endothelial protein C receptor and a bound phospholipid. J. Biol. Chem. 277, 24851–24854 (2002)

    Article  Google Scholar 

  14. Liu, Y., Xiong, Y., Naidenko, O.V., Liu, J.H., Zhang, R., Joachimiak, A., Kronenberg, M., Cheroutre, H., Reinherz, E.L., Wang, J.H.: The crystal structure of a TL/CD8alphaalpha complex at 2.1 A resolution: implications for modulation of T cell activation and memory. Immunity 18, 205–215 (2003)

    Article  Google Scholar 

  15. Wingren, C., Crowley, M.P., Degano, M., Chien, Y., Wilson, I.A.: Crystal structure of a gammadelta T cell receptor ligand T22: a truncated MHC-like fold. Science 287, 310–314 (2000)

    Article  Google Scholar 

  16. Bahram, S., Inoko, H., Shiina, T., Radosavljevic, M.: MIC and other NKG2D ligands: from none to too many. Current Opinion in Immunology 17, 505–509 (2005)

    Article  Google Scholar 

  17. Roopenian, D.C., Akilesh, S.: FcRn: the neonatal Fc receptor comes of age. Nature Reviews Immunology 7, 715–725 (2007)

    Article  Google Scholar 

  18. Feder, J.N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D.A., Basava, A., Dormishian, F., Domingo, R., Ellis Jr, M.C., Fullan, A., Hinton, L.M., Jones, N.L., Kimmel, B.E., Kronmal, G.S., Lauer, P., Lee, V.K., Loeb, D.B., Mapa, F.A., McClelland, E., Meyer, N.C., Mintier, G.A., Moeller, N., Moore, T., Morikang, E., Prass, C.E., Quintana, L., Starnes, S.M., Schatzman, R.C., Brunke, K.J., Drayna, D.T., Risch, N.J., Bacon, B.R., Wolff, R.K.: A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genetics 13, 399–408 (1996)

    Article  Google Scholar 

  19. Burmeister, W.P., Huber, A.H., Bjorkman, P.J.: Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372, 379–383 (1994)

    Article  Google Scholar 

  20. Lebron, J.A., Bennett, M.J., Vaughn, D.E., Chirino, A.J., Snow, P.M., Mintier, G.A., Feder, J.N., Bjorkman, P.J.: Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 93, 111–123 (1998)

    Article  Google Scholar 

  21. Wistrand, M., Sonnhammer, E.L.: Improved profile HMM performance by assessment of critical algorithmic features in SAM and HMMER. BMC Bioinformatics 6, 99 (2005)

    Article  Google Scholar 

  22. Sonnhammer, E.L., Eddy, S.R., Durbin, R.: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28, 405–420 (1997)

    Article  Google Scholar 

  23. Neuwald, A.F., Liu, J.S., Lawrence, C.E.: Gibbs motif sampling detection of bacterial outer membrane protein repeats. Prot. Sci. 4, 1618–1632 (1995)

    Article  Google Scholar 

  24. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000)

    Google Scholar 

  25. Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H.: Data mining in bioinformatics using Weka. Bioinformatics 20, 2479–2481 (2004)

    Article  Google Scholar 

  26. Wu, X., Kumar, V., Quilan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining Knowledge and Information Systems. Springer, Heidelberg (2008)

    Google Scholar 

  27. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. McGraw-Hill Computer Science Series. IEEE Computer Society Press, Los Alamitos, California (1991)

    Google Scholar 

  28. Platt, J.C.: Fast Training of Support Vector Machines using Sequential Minimal Optimization Advances in Kernel Methods - Support Vector Learning. In: Schölkopf, B., Burges, C., Smola, A.J. (eds.), pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  29. Diez-Rivero, C.M., Chenlo, B., Zuluaga, P., Reche, P.A.: Quantitative modeling of peptide binding to TAP using support vector machine. Proteins 14, 14 (2009)

    Google Scholar 

  30. Bhasin, M., Reinherz, E.L., Reche, P.A.: Recognition and classification of histones using support vector machine. J. Comput. Biol. 13, 102–112 (2006)

    Article  MathSciNet  Google Scholar 

  31. Chen, K., Kurgan, L.A., Ruan, J.: Prediction of protein structural class using novel evolutionary collocation-based sequence representation. J. Comput. Chem. 29, 1596–1604 (2008)

    Article  Google Scholar 

  32. Saha, S., Zack, J., Singh, B., Raghava, G.P.: VGIchan: prediction and classification of voltage-gated ion channels. Genomics Proteomics Bioinformatics 4, 253–258 (2006)

    Article  Google Scholar 

  33. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  34. Lafuente, E.M., Reche, P.A.: Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curent Pharmaceutical Design 15, 3209–3220 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Naves, E., Lafuente, E.M., Reche, P.A. (2011). Classification of MHC I Proteins According to Their Ligand-Type Specificity. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22371-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22370-9

  • Online ISBN: 978-3-642-22371-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics