Skip to main content

Subspaces Versus Submanifolds — A Comparative Study of Face Recognition

  • Chapter
Pattern Recognition, Machine Intelligence and Biometrics

Abstract

Automatic face recognition is a challenging problem in the biometrics area, where the dimension of the sample space is typically larger than the number of samples in the training set and consequently the so-called small sample size problem exists. Recently, neuroscientists emphasized the manifold ways of perception, and showed the face images may reside on a nonlinear submanifold hidden in the image space. Many manifold learning methods, such as Isometric feature mapping, Locally Linear Embedding, and Locally Linear Coordination are proposed. These methods achieved the submanifold by collectively analyzing the overlapped local neighborhoods and all claimed to be superior to such subspace methods as Eigenfaces and Fisherfaces in terms of classification accuracy. However, in literature, no systematic comparative study for face recognition is performed among them. In this paper, we carry out a comparative study among them in face recognition, and this study considers theoretical aspects as well as simulations performed using CMU PIE and FERET face databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunelli R, Poggio T (1993) Face Recognition: Features Versus Templates. IEEE Trans Pattern Anal Mach Intell, 15(10): 1042–1052

    Article  Google Scholar 

  2. Kirby M, Sirovich L (1990) Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Trans Pattern Anal Mach Intell, 12(1): 103–108

    Article  Google Scholar 

  3. Sinha P, Balas B, Ostrovsky Y et al (2006) Face Recognition by Humans: 19 Results All Computer Vision Researchers Should Know About. Proc the IEEE, November 2006, 94 (11): 1948–1962

    Article  Google Scholar 

  4. Gross R, Baker S, Matthews I et al (2004) Face Recognition Across Pose and Illumination. In: Li S Z, Jain A K (eds) Handbook of Face Recognition, Springer, Heidelberg

    Google Scholar 

  5. Gross R, Shi J, Cohn J et al (2001) Face Recognition? The Current State of the Art in Face Recognition, Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

    Google Scholar 

  6. Torres L (2004) Is There any Hope for Face Recognition? Proc of the 5th International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS 2004, Lisboa, Portugal

    Google Scholar 

  7. Turk M, Pentland (1991) Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1): 71–86

    Article  Google Scholar 

  8. Belhumeur P N, Hespanha J P (1997) Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans Pattern Anal Mach Intell, 19(7): 711–720

    Article  Google Scholar 

  9. Wiskott L, Fellous J M, Kruger N et al (1997) Face Recognition by Elastic Bunch Graph Matching. IEEE Trans Pattern Anal Mach Intell, 19(7): 775–779

    Article  Google Scholar 

  10. Batur A U and Hayes M H (2001) Linear Subspace for Illumination Robust Face Recognition. Proc IEEE Int Conf Computer Vision and Pattern Recognition, pp 296–301

    Google Scholar 

  11. Martinez A M and Kak A C (2001) PCA Versus LDA. IEEE Trans Pattern Anal Mach Intell, 23(2): 228–233

    Article  Google Scholar 

  12. Zhao D L, Lin Z C, Tang X O (2007) Laplacian PCA and its Applications. 11th IEEE International Conference on Computer Vision, pp 2012–2019

    Google Scholar 

  13. Li S Z, Jain A K (eds) (2004) Handbook of Face Recognition. Springer, Heidelberg

    Google Scholar 

  14. Wang H H, Zhou Y, Ge X L et al (2007) Subspace Evolution Analysis for Face Representation and Recognition. Patt Recogn, 40: 335–338

    Article  MATH  Google Scholar 

  15. Howland P, Wang J L, Park H (2006) Solving the Small Sample Size Problem in Face Recognition Using Generalized Discriminant Analysis. Patt Recogn, 39: 277–287

    Article  Google Scholar 

  16. Zhang F (2006) Nonlinear Feature Extraction and Dimension Reduction by Polygonal Principal Curves. Int J PRAI, 20(1): 63–78

    Google Scholar 

  17. Brand M (2004) From Subspaces to Submanifolds. Proc 15th British Machine Vision Conference. British Machine Vision Association, London

    Google Scholar 

  18. Yang M H (2002) Extended Isomap for Pattern Classification. Proc 18th National Conf on Artificial Intelligence (AAAI 2002), pp 224–229

    Google Scholar 

  19. Wu Y M, Chan K L, Wang L (2004) Face Recognition Based on Discriminative Manifold Learning. Proc 17th Int Conf on Pattern Recognition, 4: 171–174

    Google Scholar 

  20. Zhang J P, Li S Z, Wang J (2004) Nearest Manifold Approach for Face Recognition. Proc 6th IEEE Int Conf on Automatic Face and Gesture Recognition, pp 223–228

    Google Scholar 

  21. Mekuz N, Bauckhage C, Tsotsos J K (2005) Face Recognition with Weighted Locally Linear Embedding. Proc 2th Canadian Conf on Computer and Robot Vision, pp 290–296

    Google Scholar 

  22. Geng X, Zhan D C, Zhou Z H (2005) Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans Syst Man and Cybern Part B-Cybernetics, 35: 1098–1107

    Article  Google Scholar 

  23. Chen H J and Wei W (2006) Geodesic Gabriel Graph Based Supervised Nonlinear Manifold Learning. Intelligent Computing in Signal Processing and Pattern Recognition, 345: 882–888

    Article  Google Scholar 

  24. Dickens M P, Smith W A, Jing W et al (2007) Face Recognition Using Principal Geodesic Analysis and Manifold Learning. Proc 3th Iberian Conf on Pattern Recognition and Image Analysis, pp 426–434

    Google Scholar 

  25. David L D, Carrie G (2002) When Does Isomap Recover the Natural Parametrization of Families of Articulated Images? Technical report, Department of Statistics, Stanford University

    Google Scholar 

  26. Guang D and Dit-Yan Y (2006) Tensor Embedding Methods. Proc 21th National Conf on Artificial Intelligence (AAAI-2006), pp 330–335

    Google Scholar 

  27. Wand H X, Zheng W M, Hu Z L et al (2007) Local and Weighted Maximum Margin Discriminant Analysis. Proc IEEE Conf on Computer Vision and Pattern Recognition( CVPR’07), pp 532–539

    Google Scholar 

  28. Li X L, Lin S, Yan S C et al (2007) Discriminant Locally Linear Embedding with High-order Tensor Data. IEEE Trans Syst Man and Cyberne Part B-Cybernetics, 38: 342–352

    Google Scholar 

  29. Liu X M, Yin J W, Feng Z L et al (2007) Orthogonal Neighborhood Preserving Embedding for Face Recognition. Proc Ieee Int Conf on Image Processing, pp 133–136

    Google Scholar 

  30. Yang J, Zhang D, Yang J Y et al (2007) Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics. IEEE Trans Pattern Anal Mach Intell, 29: 650–664

    Article  Google Scholar 

  31. Roweis S T and Saul L K (2000) Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, 290(5500): 2323–2326

    Article  Google Scholar 

  32. Tenenbaum J B (1998) Mapping a Manifold of Perceptual Observations. In Advances in Neural Information Processing Systems. MIT Press, Cambridge

    Google Scholar 

  33. Tenenbaum J B, Silva V de, Langford J C (2000) A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290(5500): 2319–2323

    Article  Google Scholar 

  34. Navarrete P, Ruiz-del-Solar J (2002) Analysis and Comparison of Eigenspace-based Face Recognition Approaches. Int J PRAI, 16(2): 817–830

    Google Scholar 

  35. Ruiz-del-Solar J, Navarrete P (2005) Eigenspace-based Face Recognition: A Comparative Study of Different Approaches. IEEE Trans Syst Man and Cybern: Part C, 35(3): 315–325

    Article  Google Scholar 

  36. Zhao W, Chellappa R, Phillips P J et al (2003) Face Recognition: A Literature Survey. ACM Comput Surv, 35(4): 399–458

    Article  Google Scholar 

  37. Batagelj, Borut, Solina (2006) Face Recognition in Different Subspaces-A Comparative Study. Proc ICEIS’06 (Paphos, Cyprus), pp 71–80

    Google Scholar 

  38. Cox T F, Cox M A A (2001) Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC

    Google Scholar 

  39. Lafon S, Lee A B (2006) Diffusion Maps and Coarse-graining: A Unified Framework for Dimensionality Reduction, Graph Partitioning, and Dataset Parameterization. IEEE Trans Pattern Anal Mach Intell, 28(9): 1393–1403

    Article  Google Scholar 

  40. Saltenis V (2005) Constrained Optimization of the Stress Function for Multidimensional Scaling. In Lecture Notes on Computer Science. Verlag, Berlin, Germany, vol 3991: 704–711

    Article  Google Scholar 

  41. Belkin M, Niyogi P (2001) Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In Advances in Neural Information Processing Systems(NIPS), pp 585–591

    Google Scholar 

  42. He X and Niyogi P (2004) Locality Preserving Projections. In Advancesin Neural Information Processing Systems, vol 16

    Google Scholar 

  43. Zhang Z, Zha H (2004) Principal Manifolds And Nonlinear Dimensionality Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing, 26(1): 313–338

    Article  MathSciNet  MATH  Google Scholar 

  44. Donoho D L and Grimes C (2005) Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-dimensional Data. Proc of the National Academy of Sciences, 102(21): 7426–7431

    Article  Google Scholar 

  45. He X, Deng C, Yan S et al (2005) Neighborhood Preserving Embedding. Proc 10th IEEE Int Conf on Computer Vision (ICCV’05), pp 1208–1213

    Google Scholar 

  46. He X, Yan S, Hu Y et al (2005) Face Recognition Using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell, 27(3): 328–340

    Article  Google Scholar 

  47. Teh Y W, Roweis S T (2002) Automatic Alignment of Hidden Representations. In Advances in Neural Information Processing Systems, 15: 841–848

    Google Scholar 

  48. Geng X, Zhan D C, Zhou Z H (2005) Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans Syst Man and Cybern: Part B-Cybernetics, 35(5): 1098–1107

    Article  Google Scholar 

  49. Lu K, He X F (2005) Image Retrieval Based on Incremental Subspace Learning. Patt Recogn, 38(11): 2047–2054

    Article  Google Scholar 

  50. Xu D, Yan S C, Tao D C et al (2007) Marginal Fisher Analysis and its Variants for Human Gait Recognition and Content-based Image Retrieval. IEEE Trans Image Processing, 162: 811–2821

    MathSciNet  Google Scholar 

  51. Hwann-Tzong C, Huang-Wei C, Tyng-Luh L (2005) Local Discriminant Embedding and its Variants. Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2: 846–53

    Google Scholar 

  52. Navarrete P and Ruiz-del-Solar J (2003) Kernel-based Face Recognition by a Reformulation of Kernel Machines. Advances in Soft Computing-Engineering, Design and Manufacturing, Springer Engineering Series, pp 183–196

    Google Scholar 

  53. Bengio Y, Delalleau O, Le Roux N (2004) Learning Eigenfunctions Links Spectral Embedding and Kernel PCA. Neural Computation, 16(10): 2197–2219

    Article  MATH  Google Scholar 

  54. Choi H, Choi S (2007) Robust Kernel Isomap. Patt Recogn, 40(3): 853–862

    Article  MATH  Google Scholar 

  55. Bengio Y, Paiement J F, Vincent P et al (2004) Out-of-sample Extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In Advances in Neural Information Processing Systems, 16: 177–184

    Google Scholar 

  56. Li H, Teng L, and Chen W et al (2005) Supervised Learning on Local Tangent Space. In Lecture Notes on Computer Science. Springer Berlin, vol 3496: 546–551

    Article  Google Scholar 

  57. Kouropteva O, Okun O, Hadid A et al (2002) Beyond Locally Linear Embedding Algorithm. Technical Report MVG-01-2002, University of Oulu

    Google Scholar 

  58. Saul L, Roweis S (2003) Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds. Journal of Machine Learning Research, 4: 119–155

    MathSciNet  Google Scholar 

  59. Sim T, Baker S, Bsat M (2003) The CMU Database. IEEE Trans Pattern Anal Mach Intell, 25: 1615–1618

    Article  Google Scholar 

  60. Phillips P J, Moon H, Rizvi S et al (2000) The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Trans Pattern Anal Mach Intell, 22(10): 1090–1104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, H. (2011). Subspaces Versus Submanifolds — A Comparative Study of Face Recognition. In: Wang, P.S.P. (eds) Pattern Recognition, Machine Intelligence and Biometrics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22407-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22407-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22406-5

  • Online ISBN: 978-3-642-22407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics