Skip to main content

Compressive Sensing of Object-Signature

  • Conference paper
Optical Supercomputing (OSC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6748))

Included in the following conference series:

Abstract

Compressive sensing is a new framework for signal acquisition, compression, and processing. Of specific interest are two-dimensional signals such as images where an optical unit performs the acquisition and compression (i.e., compressive sensing or compressive imaging). The signal reconstruction and processing can be done by optical signal processing and/or digital signal processing. In this paper we review the theoretical basis of compressive sensing, present an optical implementation of image acquisition, and introduce a new application of compressive sensing where the actual signals used in the compressive sensing process are image object-signature (an object-signature is a specific representation of an object). We detail the application of compressive sensing to image object-signature and show the potential of compressive sensing to compress the data through analysis of several methods for obtaining signature and evaluation of the rate/distortions results of different compression methods including compressive sensing applied to object-signature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donoho, D.L.: Compressed Sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Candès, E.J., Tao, T.: Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies. IEEE Transactions on Information Theory 52(8), 5406–5425 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann, NY (2006)

    MATH  Google Scholar 

  4. Takhar, D., Laska, J.N., Wakin, M.B., Durate, M.F., et al.: A New Compressive Imaging Camera Architecture using Optical-Domain Compression. In: Proceedings of Computational Imaging IV at SPIE Electronic Imaging, CA (2006)

    Google Scholar 

  5. Jain, K.A.: Fundamentals of Digital Image Processing. Prentice-Hall, NJ (1989)

    MATH  Google Scholar 

  6. Porat, B.: A Course in Digital Signal Processing. Wiley, NY (1997)

    Google Scholar 

  7. Linde, Y., Buzo, A., Gray, R.: An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications 28(1), 84–95 (1980)

    Article  Google Scholar 

  8. Coleman, G., Andrews, H.: Image Segmentation by Clustering. Proceedings of the IEEE, 773–785 (1979)

    Google Scholar 

  9. Lustig, M., Donoho, D.L., Pauly, J.M.: Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging. Magnetic Resonance in Medicine 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  10. Elad, M.: Optimized Projections for Compressed Sensing. IEEE Transactions. on Signal Processing 55(12), 5695–5702 (2007)

    Article  MathSciNet  Google Scholar 

  11. Cotter, F., Rao, B.D.: Sparse Channel Estimation via Matching Pursuit with Application to Equalization. IEEE Transactions on Communications 50(3) (2002)

    Google Scholar 

  12. Sen, P., Darabi, S.: Compressive Dual Photography. Computer Graphics Forum (2009)

    Google Scholar 

  13. Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press, MD (1982)

    Book  MATH  Google Scholar 

  14. Baggs, R.A., Tamir, D.E.: Image Registration Using Dynamic Space Warping. In: The International Conference on Artificial Intelligence and Pattern Recognition, Florida (2008)

    Google Scholar 

  15. Keogh, E., et al.: LB_Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures. In: International Conference on Very Large Data Bases (2006)

    Google Scholar 

  16. Candès, E., Wakin, M.: An introduction to Compressive Sampling. IEEE Signal Processing Magazine 25(2), 21–30 (2008)

    Article  Google Scholar 

  17. Romberg, J.: Imaging Via Compressive Sampling. IEEE Signal Processing Magazine 25(2), 14–20 (2008)

    Article  Google Scholar 

  18. Chan, W.L., Charan, K., Takhar, D., et al.: A Single-Pixel Terahertz Imaging System Based on Compressed Sensing. Applied Physics Letters 93, 121105 (2008)

    Article  Google Scholar 

  19. Chan, W.L., Moravec, M.L., Baraniuk, R.G., Mittleman, D.M.: Terahertz Imaging with Compressed Sensing and Phase Retrieval. Optics Letters 33(9), 974–977 (2008)

    Article  Google Scholar 

  20. Stern, A., Javidi, B.: Random Projections Imaging with Extended Space-Bandwidth Product. IEEE/OSA Journal of Display Technology 3(3), 315–320 (2007)

    Article  Google Scholar 

  21. Stern, A.: Compressed Imaging System with Linear Sensors. Optics Letters 32(21), 3077–3079 (2007)

    Article  Google Scholar 

  22. Rivenson, Y., Stern, A.: Compressed Imaging with Separable Sensing Operator. IEEE Signal Processing Letters 16(6), 449–452 (2009)

    Article  Google Scholar 

  23. Rivenson, Y., Stern, A.: Practical Compressive Sensing of Large Images. In: International Conference on Digital Signal Processing, Greece (2009)

    Google Scholar 

  24. Gehm, M.E., John, R., Brady, D.E., Willett, R.M., Schulyz, T.J.: Single Shot Compressive Spectral Imaging Using a Dual Disperser Architecture. Optics Express 12(21), 14013–14027 (2007)

    Article  Google Scholar 

  25. Fergus, R., Torralba, A., Freeman, W.T.: Random Lens Imaging, MIT Technical Report, MIT-CSAILTR-2006-058 (2006)

    Google Scholar 

  26. Mahalanobis, A.: Compressive and Computational Sensing. In: Seventh International Workshop on Information Optics, France (2008)

    Google Scholar 

  27. Brady, D.J., Choi, K., Marks, D.L., Horisaki, R., Lim, S.: Compressive Holography. Optics Express 17, 13040–13049 (2009)

    Article  Google Scholar 

  28. Choi, K., Horisaki, R., Hahn, J., Lim, S., Marks, et al.: Compressive Holography of Diffuse Objects. Applied Optics 49, H1–H10 (2010)

    Article  Google Scholar 

  29. Miller, R.A., Burr, C.U., Tai, Y., Psaltis, D.: A Magnetically Actuated MEMS Scanning Mirror. In: SPIE, vol. 2678, pp. 47–52 (1996)

    Google Scholar 

  30. Cattan, E., Haccart, T., Velu, G., Remiens, D., Bergaud, C., Nicu, L.: Piezoelectric Properties of PZT Films for Microcantilevers. Sensors and Actuators 74, 60–64 (1999)

    Article  Google Scholar 

  31. Kahn, H., Juff, M.A., Heuer, J.H.: The TiNi Shape Memory Alloy and its Applications for MEMS. Journal of Micromechanical and Microengineering 8, 213–221 (1998)

    Article  Google Scholar 

  32. Pizzi, M., Koniachkine, K., Bassino, E., Sinesi, S., Perlo, P.: Electrostatic Microshutter-Micromirror Array for Light Modulation Systems. In: Proceeding of the SPIE, vol. 3878, p. 164–171 (1999)

    Google Scholar 

  33. Pizzi, M., Koniachkine, V., Nieri, M., Sinesi, S., Perlo, P.: Electrostatically Driven Film Light Modulators for Display Applications. Microsystems Technologies 10, 17–21 (2003)

    Article  Google Scholar 

  34. Stockley, J., Sharp, G., Doroski, D., Johnson, K.: High-Speed Analog Achromatic Intensity Modulator. Optics Letters 19, 758 (1994)

    Article  Google Scholar 

  35. Tamir, D.E., Park, C., Yoo, B.: The Validity of Pyramid K-means. In: SPIE Conference on Optics and Photonics / Optical Engineering and Applications, CA (2007)

    Google Scholar 

  36. Arkin, E.M., Chiang, Y.J., Held, M., Mitchell, J., Sacristan, V., Skiena, S.S., Yang, T.C.: On Minimum-Area Hulls. Algorithmica 21, 119–136 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE Transactions on Information Theory IT 23(3), 337–343 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ziv, J., Lempel, A.: Compression of Individual Sequences via Variable-Rate Coding. IEEE Transactions on Information Theory IT 24(5), 530–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamir, D.E., Shaked, N.T., Geerts, W.J., Dolev, S. (2011). Compressive Sensing of Object-Signature. In: Dolev, S., Oltean, M. (eds) Optical Supercomputing. OSC 2010. Lecture Notes in Computer Science, vol 6748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22494-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22494-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22493-5

  • Online ISBN: 978-3-642-22494-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics