Skip to main content

Secondary Lichen Compounds as Protection Against Excess Solar Radiation and Herbivores

  • Chapter
Progress in Botany 73

Part of the book series: Progress in Botany ((BOTANY,volume 73))

Abstract

The functional roles of secondary lichen compounds are reviewed with focus on sun-screening and herbivore-deterring functions. Hypotheses on ecological functions can be tested because lichen compounds can nondestructively be extracted from air-dry lichens with 100% acetone. Substantial evidence supports a sun-screening function of cortical compounds. They screen solar radiation by absorptance (parietin, melanins) or by reflectance (atranorin). Their concentration correlates with light exposure and they protect the photobiont against excessive visible light. UV-B induces the formation of parietin, usnic acid, and melanins; the synthesis of the two first compounds has been shown to be boosted by photosynthates. The numerous extractable medullary lichen compounds hardly function as sun-screens. Some of these carbon-based compounds deter generalist herbivores, particularly in lichens in oligotrophic sites. Lichens in nitrogen-rich sites often deter grazing animals as efficient as those from oligotrophic sites despite low contents of lichen compounds. Acetone rinsing of nitrophytic lichens does not lead to increased grazing, meaning that their defense remains to be described. Thanks to grazing experiments using acetone rinsing, there is now solid support for the optimal defense theory in lichen–herbivore interactions. Recent studies have shown that lichen-feeding gastropods can shape epiphytic lichen communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asplund J, Gauslaa Y (2007) Content of secondary compounds depends on thallus size in the foliose lichen Lobaria pulmonaria. Lichenologist 39:273–278

    Article  Google Scholar 

  • Asplund J, Gauslaa Y (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155:93–99

    Article  PubMed  Google Scholar 

  • Asplund J, Solhaug KA, Gauslaa Y (2009) Fungal depsidones – an inducible or constitutive defence against herbivores in the lichen Lobaria pulmonaria? Basic Appl Ecol 10:273–278

    Article  Google Scholar 

  • Asplund J, Johansson O, Nybakken L, Palmqvist K, Gauslaa Y (2010a) Simulated nitrogen deposition influences gastropod grazing in lichens. Ecoscience 17:83–89

    Article  Google Scholar 

  • Asplund J, Larsson P, Vatne S, Gauslaa Y (2010b) Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. J Ecol 98:218–225

    Article  Google Scholar 

  • Asplund J, Solhaug KA, Gauslaa Y (2010c) Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology 91:3100–3105

    Article  PubMed  Google Scholar 

  • Bjerke JW, Elvebakk A, Domínguez E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344

    Article  PubMed  CAS  Google Scholar 

  • Björn LO, McKenzie RL (2002) Ozone depletion and effects of ultraviolet radiation. In: Björn LO (ed) Photobiology: the science of light and life. Kluwer Academic, Dordrecht, pp 239–263

    Chapter  Google Scholar 

  • Brown RT, Mikola P (1974) The influence of fruticose soil lichens upon the mychorrhiza and seedling growth of forest trees. Acta For Fenn 141:1–23

    Google Scholar 

  • Buffoni Hall RS, Paulsson M, Duncan K, Tobin AK, Widell S, Bornman JF (2003) Water- and temperature-dependence of DNA damage and repair in the fruticose lichen Cladonia arbuscula ssp. mitis exposed to UV-B radiation. Physiol Plant 118:371–379

    Article  Google Scholar 

  • Cameron R (2009) Are non-native gastropods a threat to endangered lichens? Can Field Nat 123:169–171

    Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev Camb Philos Soc 74:311–345

    Article  PubMed  CAS  Google Scholar 

  • Dailey RN, Montgomery DL, Ingham JT, Siemion R, Vasquez M, Raisbeck MF (2008) Toxicity of the lichen secondary metabolite (+)-usnic acid in domestic sheep. Vet Pathol 45:19–25

    Article  PubMed  CAS  Google Scholar 

  • de la Torre R, Sancho LG, Horneck G, de los Rios A, Wierzchos J, Olsson-Francis K, Cockell CS, Rettberg P, Berger T, de Vera JPP, Ott S, Frias JM, Melendi PG, Lucas MM, Reina M, Pintado A, Demets R (2010) Survival of lichens and bacteria exposed to outer space conditions – results of the Lithopanspermia experiments. Icarus 208:735–748

    Article  Google Scholar 

  • de Vera JP, Rettberg P, Ott S (2008) Life at the limits: capacities of isolated and cultured lichen symbionts to resist extreme environmental stresses. Origins Life Evol Biosph 38:457–468

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III, Green TGA, Czygan FC, Lange OL (1990) Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia 84:451–456

    Google Scholar 

  • Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171–182

    Google Scholar 

  • Dubay SA, Hayward GD, Martínez del Rio C (2008) Nutritional value and diet preference of arboreal lichens and hypogeous fungi for small mammals in the Rocky Mountains. Can J Zool 86:851–862

    Article  CAS  Google Scholar 

  • Emmerich R, Giez I, Lange OL, Proksch P (1993) Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis. Phytochemistry 33:1389–1394

    Article  CAS  Google Scholar 

  • Ertl L (1951) Über die Lichtverhältnisse in Laubflechten. Planta 39:245–270

    Article  Google Scholar 

  • Fahselt D (1994) Secondary biochemistry of lichens. Symbiosis 16:117–165

    CAS  Google Scholar 

  • Fahselt D, Alstrup V (1997) Visualization of extracellular deposits in recent and subfossil Umbilicaria hyperborea. Lichenologist 29:547–557

    Google Scholar 

  • Favero-Longo SE, Piervittori R (2010) Lichen-plant interactions. J Plant Interact 5:163–177

    Article  Google Scholar 

  • Fisher RF (1979) Possible allelopathic effects of reindeer-moss (Cladonia) on Jack pine and white spruce. For Sci 25:256–260

    Google Scholar 

  • Gauslaa Y (1985) The ecology of Lobarion pulmonariae and Parmelion caperatae in Quercus dominated forests in south-west Norway. Lichenologist 17:117–140

    Article  Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105

    Article  PubMed  Google Scholar 

  • Gauslaa Y (2008) Mollusc grazing may constrain the ecological niche of the old forest lichen Pseudocyphellaria crocata. Plant Biol 10:711–717

    Article  PubMed  CAS  Google Scholar 

  • Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl Ecol 6:75–82

    Article  CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (1996) Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct Ecol 10:344–354

    Article  Google Scholar 

  • Gauslaa Y, Solhaug KA (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria-interactions of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705

    CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (2000) High-light-intensity damage to the foliose lichen Lobaria pulmonaria within a natural forest: the applicability of chlorophyll fluorescence methods. Lichenologist 32:271–289

    Article  Google Scholar 

  • Gauslaa Y, Solhaug KA (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471

    Article  Google Scholar 

  • Gauslaa Y, Ustvedt EM (2003) Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem Photobiol Sci 2:424–432

    Article  CAS  Google Scholar 

  • Gauslaa Y, Lie M, Solhaug KA, Ohlson M (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147:406–416

    Article  PubMed  Google Scholar 

  • Gerson U, Seaward MRD (1977) Lichen-invertebrate associations. In: Seaward MRD (ed) Lichen ecology. Academic, London, pp 69–119

    Google Scholar 

  • Hauck M (2008) Metal homeostasis in Hypogymnia physodes is controlled by lichen substances. Environ Pollut 153:304–308

    Article  PubMed  CAS  Google Scholar 

  • Hesbacher S, Giez I, Embacher G, Fiedler K, Max W, Trawoger A, Turk R, Lange OL, Proksch P (1995) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J Chem Ecol 21:2079–2089

    Article  CAS  Google Scholar 

  • Hill DJ, Woolhouse HW (1966) Aspects of the autecology of Xanthoria parietina agg. Lichenologist 3:207–214

    Article  Google Scholar 

  • Honegger R (1991) Functional aspects of lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    Article  CAS  Google Scholar 

  • Huneck S (1973) Nature of lichen substances. In: Ahmadjian V (ed) The lichens. Academic, London, pp 495–522

    Chapter  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    Article  PubMed  CAS  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Book  Google Scholar 

  • Imshaug HA, Brodo IM (1966) Biosystematic studies in Lecanora pallida and some related lichens in the Americas. Nova Hedwigia 12:1–59

    Google Scholar 

  • Ingólfsdóttir K (2002) Usnic acid. Phytochemistry 61:729–736

    Article  PubMed  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago

    Google Scholar 

  • Lange OL, Green TGA, Reichenberger H, Hesbacher S, Proksch P (1997) Do secondary substances in the thallus of a lichen promote CO2 diffusion and prevent depression of net photosynthesis at high water content? Oecologia 112:1–3

    Article  Google Scholar 

  • Lawrey JD (1980) Correlations between lichen secondary chemistry and grazing activity by Pallifera-varia. Bryologist 83:328–334

    Article  Google Scholar 

  • Lawrey JD (1983) Lichen herbivore preference: a test of two hypotheses. Am J Bot 70:1188–1194

    Article  Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    Article  CAS  Google Scholar 

  • Lawrey JD (2000) Chemical interactions between two lichen-degrading fungi. J Chem Ecol 26:1821–1831

    Article  CAS  Google Scholar 

  • Legaz ME, Fontaniella B, Millanes AM, Vicente C (2004) Secreted arginases from phylogenetically far-related lichen species act as cross-recognition factors for two different algal cells. Eur J Cell Biol 83:435–446

    Article  PubMed  CAS  Google Scholar 

  • Mattson W (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycol Prog 5:221–229

    Article  Google Scholar 

  • McEvoy M, Solhaug KA, Gauslaa Y (2007a) Solar radiation screening in usnic acid-containing cortices of the lichen Nephroma arcticum. Symbiosis 43:143–150

    Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007b) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282

    Article  PubMed  CAS  Google Scholar 

  • McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320

    Article  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Zhigalova TV, Naqvi KR (2009) Light absorption by isolated chloroplasts and leaves: effects of scattering and ‘packing’. Photosynth Res 102:31–41

    Article  PubMed  CAS  Google Scholar 

  • Milborrow BV (1963) Penetration of seeds by acetone solutes. Nature 199:716–717

    Article  CAS  Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch 65c:157–173

    Google Scholar 

  • Nybakken L, Julkunen-Tiitto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485

    Article  Google Scholar 

  • Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216

    Article  PubMed  Google Scholar 

  • Nybakken L, Asplund J, Solhaug KA, Gauslaa Y (2007) Forest successional stage affects the cortical secondary chemistry of three old forest lichens. J Chem Ecol 33:1607–1618

    Article  PubMed  CAS  Google Scholar 

  • Nybakken L, Johansson O, Palmqvist K (2009) Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition. Glob Change Biol 15:2247–2260

    Article  Google Scholar 

  • Nybakken L, Helmersen AM, Gauslaa Y, Selås V (2010) Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus). J Chem Ecol 36:298–304

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Pöykkö H, Hyvärinen M, Backor M (2005) Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology 86:2623–2632

    Article  Google Scholar 

  • Pyatt FB (1967) The inhibitory influence of Peltigera canina on the germination of graminaceous seeds and the subsequent growth of the seedlings. Bryologist 70:326–329

    Google Scholar 

  • Ranković B, Mišić M, Sukdolak S (2008) The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J Microbiol Biotechnol 24:1239–1242

    Article  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic, New York

    Google Scholar 

  • Richardson DHS, Young CM (1977) Lichens and vertebrates. In: Seaward MRD (ed) Lichen ecology. Academic, London, pp 121–144

    Google Scholar 

  • Rundel PW (1969) Clinal variation in the production of usnic acid in Cladonia subtenuis along light gradients. Bryologist 72:40–44

    CAS  Google Scholar 

  • Sancho LG, de la Torre R, Horneck G, Ascaso C, de los Rios A, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454

    Article  PubMed  Google Scholar 

  • Scheidegger C (1995) Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population. Lichenologist 27:361–374

    Google Scholar 

  • Scheidegger C, Frey B, Zoller S (1995) Transplantation of symbiotic propagules and thallus fragments: Methods for the conservation of threatened epiphytic lichen population. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70:41–62

    Google Scholar 

  • Slansky F (1979) Effect of the lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armyworm, Spodoptera-ornithogalli (Lepidoptera, Noctuidae). Environ Entomol 8:865–868

    CAS  Google Scholar 

  • Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. The British Lichen Society, London

    Google Scholar 

  • Solberg YJ (1971) Studies on the chemistry of lichens. X. Chemical investigation of the lichen species Xanthoria parietina (L.) Th. Fr. Bryologist 74:144–150

    Article  CAS  Google Scholar 

  • Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108:412–418

    Article  Google Scholar 

  • Solhaug KA, Gauslaa Y (2001) Acetone rinsing – a method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis 30:301–315

    CAS  Google Scholar 

  • Solhaug KA, Gauslaa Y (2004) Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant Cell Environ 27:167–176

    Article  CAS  Google Scholar 

  • Solhaug KA, Gauslaa Y, Haugen J (1995) Adverse effects of epiphytic crustose lichens upon stem photosynthesis and chlorophyll of Populus tremula L. Bot Acta 108:233–239

    CAS  Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    Article  CAS  Google Scholar 

  • Solhaug KA, Lind M, Nybakken L, Gauslaa Y (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora Morphol Distrib Funct Ecol Plants 204:40–48

    Article  Google Scholar 

  • Solhaug K, Larsson P, Gauslaa Y (2010) Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments. Planta 231:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Souza-Egipsy V, Valladares F, Ascaso C (2000) Water distribution in foliose lichen species: interactions between method of hydration, lichen substances and thallus anatomy. Ann Bot 86:595–601

    Article  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Quart Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Stark S, Kytöviita M-M, Neumann AB (2007) The phenolic compounds in Cladonia are not antimicrobial in soil. Oecologia 152:299–306

    Article  PubMed  Google Scholar 

  • Sundset MA, Kohn A, Mathiesen SD, Præsteng KE (2008) Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. Naturwissenschaften 95:741–749

    Google Scholar 

  • Tao KL, Khan AA (1974) Penetration of dry seeds with chemicals applied in acetone. Plant Physiol 54:956–958

    Article  PubMed  CAS  Google Scholar 

  • Temina M, Levitsky DO, Dembitsky VM (2010) Chemical constituents of the epiphytic and lithophilic lichens of the genus Collema. Rec Nat Prod 4:79–86

    CAS  Google Scholar 

  • Tønsberg T (1992) The sorediate and isidiate, corticolous, crustose lichens in Norway. Sommerfeltia 14:1–331

    Google Scholar 

  • Vatne S, Solhoy T, Asplund J, Gauslaa Y (2010) Grazing damage in the old forest lichen Lobaria pulmonaria increases with gastropod abundance in deciduous forests. Lichenologist 42:615–619

    Article  Google Scholar 

  • Vavasseur A, Gautier H, Thibaud MC, Lasceve G (1991) Effects of usnic acid on the oxygen-exchange properties of mesophyll cell protoplasts from Commelina communis L. J Plant Physiol 139:90–94

    Article  CAS  Google Scholar 

  • Vráblíková H, McEvoy M, Solhaug KA, Barták M, Gauslaa Y (2006) Annual variation in photo acclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. J Photochem Photobiol B Biol 83:151–162

    Article  Google Scholar 

  • White T (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Asbjørn Solhaug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solhaug, K.A., Gauslaa, Y. (2012). Secondary Lichen Compounds as Protection Against Excess Solar Radiation and Herbivores. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 73. Progress in Botany, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22746-2_11

Download citation

Publish with us

Policies and ethics