Skip to main content

Three Data Partitioning Strategies for Building Local Classifiers

  • Chapter
Ensembles in Machine Learning Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 373))

  • 1533 Accesses

Abstract

Divide-and-conquer approach has been recognized in multiple classifier systems aiming to utilize local expertise of individual classifiers. In this study we experimentally investigate three strategies for building local classifiers that are based on different routines of sampling data for training. The first two strategies are based on clustering the training data and building an individual classifier for each cluster or a combination. The third strategy divides the training set based on a selected feature and trains a separate classifier for each subset. Experiments are carried out on simulated and real datasets. We report improvement in the final classification accuracy as a result of combining the three strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L.: Bagging predictors. Machine Learning 24(1996), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorization. Inf. Fusion 6, 5–20 (2005)

    Article  Google Scholar 

  3. Frosyniotis, D., Stafylopatis, A., Likas, A.: A divide-and-conquer method for multi-net classifiers. Pattern Analysis and Appl. 6, 32–40 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harries, M.: Splice-2 comparative evaluation: Electricity pricing. Technical Report UNSW-CSE -TR-9905, Artif. Intell. Group, School of Computer Science and Engineering, The University of New South Wales, Sidney (1999)

    Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction. Springer, Heidelberg (2005)

    Google Scholar 

  6. Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  7. Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowledge and Inf. Syst. 22, 371–391 (2009)

    Article  Google Scholar 

  8. King, G., Zeng, L.: Logistic regression in rare events data. Political Analysis 9(2001), 137–163 (2001)

    Google Scholar 

  9. Kuncheva, L.: Clustering-and-selection model for classifier combination. In: Proc. the 4th Int. Conf. Knowledge-Based Intell. Eng. Syst. and Allied Technologies, Brighton, UK, pp. 185–188 (2000)

    Google Scholar 

  10. Kuncheva, L.I., Rodriguez, J.J.: Classifier ensembles with a random linear oracle. IEEE Trans. Knowledge and Data Eng. 19, 500–508 (2007)

    Article  Google Scholar 

  11. Lim, M., Sohn, S.: Cluster-based dynamic scoring model. Expert Systems with Appl. 32, 427–431 (2007)

    Article  Google Scholar 

  12. Liu, R., Yuan, B.: Multiple classifiers combination by clustering and selection. Inf. Fusion 2, 163–168 (2001)

    Article  Google Scholar 

  13. Newman, D.J., Asuncion, A.: UCI machine learning repository, http://archive.ics.uci.edu/ml/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Žliobaitė, I. (2011). Three Data Partitioning Strategies for Building Local Classifiers. In: Okun, O., Valentini, G., Re, M. (eds) Ensembles in Machine Learning Applications. Studies in Computational Intelligence, vol 373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22910-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22910-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22909-1

  • Online ISBN: 978-3-642-22910-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics