Skip to main content

Molecular Basis of Morphogenesis in Fungi

  • Chapter
  • First Online:
Morphogenesis and Pathogenicity in Fungi

Part of the book series: Topics in Current Genetics ((TCG,volume 22))

Abstract

In fungi, cellular morphogenesis is driven by localized membrane expansion and cell wall deposition. Variation in the geometry of fungal cells likely arises through the precise temporal and spatial regulation of these processes. Nevertheless, these modes of regulation are not well understood in filamentous fungi. This review focuses on three key aspects of fungal cellular morphogenesis: symmetry breaking, polarity maintenance, and septum formation. The mechanisms underlying cellular morphogenesis are summarized, with an emphasis on comparison to the model yeasts. In addition, mechanisms that coordinate morphogenesis with the yeast cell division cycle are briefly outlined. It is proposed that to some extent, analogous mechanisms function during fungal development to alter cell shape and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDK:

Cyclin-dependent kinase

GAP:

GTPase-activating protein

GEF:

Guanine nucleotide exchange factor

MEN:

Mitotic exit network

NETO:

New end take-off

Nox:

NADPH oxidase

PAK:

p21-associated kinase

ROS:

Reactive oxygen species

SIN:

Septation initiation network

SPB:

Spindle pole body

SRD:

Sterol-rich domain

v-SNARE:

Vesicle-soluble, NSF attachment receptor

Ts:

Temperature sensitive

References

  • Araujo-Bazan L, Penalva MA, Espeso EA (2008) Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67:891–905

    Article  PubMed  CAS  Google Scholar 

  • Araujo-Palomares CL, Castro-Longoria E, Riquelme M (2007) Ontogeny of the Spitzenkorper in germlings of Neurospora crassa. Fungal Genet Biol 44:492–503

    Article  PubMed  Google Scholar 

  • Bachewich C, Masker K, Osmani S (2005) The polo-like kinase PLKA is required for initiation and progression through mitosis in the filamentous fungus Aspergillus nidulans. Mol Microbiol 55:572–587

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Hergert F, Gierz G (1989) Computer simulations of fungal morphogenesis and the mathematical basis for hyphal tip growth. Protoplasma 153:46–57

    Article  Google Scholar 

  • Bartnicki-Garcia S, Bartnicki DD, Gierz G, Lopez-Franco R, Bracker CE (1995) Evidence that Spitzenkorper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp Mycol 19:153–159

    Article  PubMed  CAS  Google Scholar 

  • Bruno K, Morrell JL, Hamer JE, Staiger CJ (2001) SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesis. Mol Microbiol 42:3–12

    Article  PubMed  CAS  Google Scholar 

  • Cano-Dominguez N, Alvarez-Delfin K, Hansberg W, Aguirre J (2008) NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 7:1352–1361

    Article  PubMed  CAS  Google Scholar 

  • Canovas D, Perez-Martin J (2009) Sphingolipid biosynthesis is required for polar growth in the dimorphic pathogen Ustilago maydis. Fungal Genet Biol 46:190–200

    Article  PubMed  CAS  Google Scholar 

  • Chang F, Peter M (2003) Yeasts make their mark. Nat Cell Biol 5:294–299

    Article  PubMed  CAS  Google Scholar 

  • Chant J (1999) Cell polarity in yeast. Annu Rev Cell Dev Biol 15:365–391

    Article  PubMed  CAS  Google Scholar 

  • Chapa-y-Lazo B, Lee S, Regan H, Sudbery P (2011) The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth. Fungal Biol 115(6):547–556

    Article  PubMed  CAS  Google Scholar 

  • Chen CT, Feoktistova A, Chen JS, Shim YS, Clifford DM et al (2008) The SIN kinase Sid2 regulates cytoplasmic retention of the S. pombe Cdc14-like phosphatase Clp1. Curr Biol 18:1594–1599

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Alvarez DL, Callejas-Negrete OA, Gomez N, Freitag M, Roberson RW et al (2010) Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet Biol 47:573–586

    Article  PubMed  CAS  Google Scholar 

  • Doyle T, Botstein D (1996) Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci USA 93:3886–3891

    Article  PubMed  CAS  Google Scholar 

  • Egan M, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772–11777

    Article  PubMed  CAS  Google Scholar 

  • Farah ME, Amberg DC (2007) Conserved actin cysteine residues are oxidative stress sensors that can regulate cell death in yeast. Mol Biol Cell 18:1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Fiddy C, Trinci AP (1976) Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol 97:169–184

    PubMed  CAS  Google Scholar 

  • Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi – interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68:813–826

    Article  PubMed  CAS  Google Scholar 

  • Ge W, Balasubramanian MK (2008) Pxl1p, a paxillin-related protein, stabilizes the actomyosin ring during cytokinesis in fission yeast. Mol Biol Cell 19:1680–1692

    Article  PubMed  CAS  Google Scholar 

  • Girbardt M (1957) Der Spitzenkorper von Polystictus versicolor. Planta 50:47–59

    Article  Google Scholar 

  • Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ (2004) Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42:51–62

    Article  PubMed  CAS  Google Scholar 

  • Hachet O, Simanis V (2008) Mid1/anillin and the septation initiation network orchestrate contractile ring assembly for cytokinesis. Genes Dev 22:3205–3216

    Article  PubMed  CAS  Google Scholar 

  • Hamer JE, Valent B, Chumley FG (1989) Mutations at the smo genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics 122:351–361

    PubMed  CAS  Google Scholar 

  • Han KH, Seo JA, Yu JH (2004) Regulators of G-protein signaling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signaling. Mol Microbiol 53:529–540

    Article  PubMed  CAS  Google Scholar 

  • Harris SD (1999) Morphogenesis is coordinated with nuclear division in germinating Aspergillus nidulans conidiospores. Microbiology 145:2747–2756

    PubMed  CAS  Google Scholar 

  • Harris SD (2010) Hyphal growth and polarity. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM, Washington, DC

    Google Scholar 

  • Harris SD (2011) Cdc42/Rho GTPases in fungi: variations on a common theme. Mol Microbiol 79:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Harris SD, Momany M (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391–400

    Article  PubMed  CAS  Google Scholar 

  • Harris SD, Hofmann AF, Tedford H, Lee MP (1999) Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus Aspergillus nidulans. Genetics 151:1015–1025

    PubMed  CAS  Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S et al (2005) Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229

    Article  PubMed  CAS  Google Scholar 

  • Harris SD, Turner G, Meyer V, Espeso EA, Specht T et al (2009) Morphology and development in Aspergillus nidulans: a complex puzzle. Fungal Genet Biol 46:S82–S92

    Article  PubMed  CAS  Google Scholar 

  • Johnson AE, Gould KL (2011) Dma1 ubiquitinates the SIN scaffold, Sid4, to impede the mitotic localization of the Plo1 kinase. EMBO J 30:341–354

    Article  PubMed  CAS  Google Scholar 

  • Justa-Schuch D, Heilig Y, Richthammer C, Seiler S (2010) Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol Microbiol 76:220–235

    Article  PubMed  CAS  Google Scholar 

  • Keaton MA, Lew DJ (2006) Eavesdropping on the cytoskeleton: progress and controversy in the yeast morphogenesis checkpoint. Curr Opin Microbiol 9:540–546

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Zeng CJT, Nayak T, Shao R, Huang AC et al (2009) Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 20:2874–2884

    Article  PubMed  CAS  Google Scholar 

  • Knaus M, Pelli-Gulli MP, van Drogen F, Springer S, Jaquenoud M et al (2007) Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. EMBO J 26:4501–4513

    Article  PubMed  CAS  Google Scholar 

  • Konzack S, Rischitor PE, Enke C, Fischer R (2005) The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16:497–506

    Article  PubMed  CAS  Google Scholar 

  • Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR et al (2008) Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol 18:1719–1726

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Simanis V (2008) An overview of the fission yeast septation initiation network (SIN). Biochem Soc Trans 36:411–415

    Article  PubMed  CAS  Google Scholar 

  • Kubler E, Riezman H (1993) Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J 12:2855–2862

    PubMed  CAS  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  PubMed  CAS  Google Scholar 

  • Layton AT, Savage NS, Howell AS, Carroll SY, Drubin DG et al (2011) Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr Biol 21:184–194

    Article  PubMed  CAS  Google Scholar 

  • Lew DJ, Reed SI (1995) Cell cycle control of morphogenesis in budding yeast. Curr Opin Genet Dev 5:17–23

    Article  PubMed  CAS  Google Scholar 

  • Li S, Du L, Yuen G, Harris SD (2006) Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 17:1218–1227

    Article  PubMed  CAS  Google Scholar 

  • Lindsey R, Cowden S, Hernández-Rodríguez Y, Momany M (2010) Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. Eukaryot Cell 9:155–163

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Wang H, McCollum D, Balasubramanian MK (1999) Drc1/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. Genetics 153:1193–1203

    PubMed  CAS  Google Scholar 

  • Liu J, Tang X, Wang H, Oliferenko S, Balasubramanian MK (2002) The localization of the integral membrane protein Cps1p to the cell division site is dependent on the actomyosin ring and the septation-inducing network in Schizosaccharomyces pombe. Mol Biol Cell 13:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Franco R, Bracker CE (1996) Diversity and dynamics of the Spitzenkorper in growing hyphal tips of higher fungi. Protoplasma 195:90–111

    Article  Google Scholar 

  • Malinska K, Malinsky J, Opekarova M, Tanner W (2003) Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell 14:4427–4436

    Article  PubMed  CAS  Google Scholar 

  • Malinsky J, Opekarova M, Tanner W (2010) The lateral compartmentation of the yeast plasma membrane. Yeast 27:473–478

    Article  PubMed  CAS  Google Scholar 

  • Martin SG (2009) Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 19:447–454

    Article  PubMed  CAS  Google Scholar 

  • Martin SG, Berthelot-Grosjean M (2009) Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459:852–856

    Article  PubMed  CAS  Google Scholar 

  • Martin SG, Chang F (2005) New end take off: regulating cell polarity during the fission yeast cell cycle. Cell Cycle 4:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Martin SW, Konopka JB (2004) Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3:675–684

    Article  PubMed  CAS  Google Scholar 

  • McCusker D, Denison C, Anderson S, Egelhofer TA, Yates JR III et al (2007) Cdk1 coordinates cell-surface growth with the cell cycle. Nat Cell Biol 9:506–515

    Article  PubMed  CAS  Google Scholar 

  • Miller PJ, Johnson DI (1994) Cdc42p GTPase is involved in controlling polarized cell growth in Schizosaccharomyces pombe. Mol Cell Biol 14:1075–1083

    PubMed  CAS  Google Scholar 

  • Momany M, Hamer JE (1997) Relationship of actin, microtubules, and crosswall synthesis during septation in Aspergillus nidulans. Cell Motil Cytoskeleton 38:373–384

    Article  PubMed  CAS  Google Scholar 

  • Momany M, Westfall PJ, Abramowsky G (1999) Aspergillus nidulans swo mutants show defects in polarity establishment, polarity maintenance and hyphal morphogenesis. Genetics 151:557–567

    PubMed  CAS  Google Scholar 

  • Morris NR (1975) Mitotic mutants of Aspergillus nidulans. Genet Res 26:237–254

    Article  PubMed  CAS  Google Scholar 

  • Moseley JB, Nurse P (2009) Cdk1 and cell morphology: connections ans directions. Curr Opin Cell Biol 21:82–88

    Article  PubMed  CAS  Google Scholar 

  • Moseley JB, Mayeux A, Paoletti A, Nurse P (2009) A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459:857–860

    Article  PubMed  CAS  Google Scholar 

  • Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422:766–774

    Article  PubMed  CAS  Google Scholar 

  • Park HO, Bi E (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71:48–96

    Article  PubMed  CAS  Google Scholar 

  • Pearson CL, Xu K, Sharpless KE, Harris SD (2004) MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol Biol Cell 15:3658–3672

    Article  PubMed  CAS  Google Scholar 

  • Pelham RJ Jr, Chang F (2001) Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe. Nat Cell Biol 3:235–244

    Article  PubMed  CAS  Google Scholar 

  • Perez P, Rincon SA (2010) Rho GTPases: regulation of cell polarity and growth in yeasts. Biochem J 426:243–253

    Article  PubMed  CAS  Google Scholar 

  • Regalado CM, Crawford JW, Ritz K, Sleeman BD (1996) The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycol Res 100:1473–1480

    Article  Google Scholar 

  • Rittenour WR, Harris SD (2008) Characterization of Fusarium graminearum Mes1 reveals roles in cell-surface organization and virulence. Fungal Genet Biol 45:933–946

    Article  PubMed  CAS  Google Scholar 

  • Rittenour WR, Chen M, Cahoon EB, Harris SD (2011) Control of glucosylceramide production and morphogenesis by the Bar1 ceramide synthase in Fusarium graminearum. PLoS One 6:e19385

    Article  PubMed  CAS  Google Scholar 

  • Semighini C, Harris SD (2008) Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179:1919–1932

    Article  PubMed  CAS  Google Scholar 

  • Sharpless KE, Harris SD (2002) Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13:469–479

    Google Scholar 

  • Shimada Y, Gulli MP, Peter M (2000) Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating. Nat Cell Biol 2:117–124

    Article  PubMed  CAS  Google Scholar 

  • Si H, Justa-Schuch D, Seiler S, Harris SD (2010) Regulation of septum formation by the Bud3-Rho4 GTPase module in Aspergillus nidulans. Genetics 185:165–176

    Article  PubMed  CAS  Google Scholar 

  • Simanis V (2003) The mitotic exit and septation initiation networks. J Cell Sci 116:4261–4262

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  PubMed  CAS  Google Scholar 

  • Slaughter BD, Smith SE, Li R (2009) Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb Perspect Biol 1:a003384

    Article  PubMed  Google Scholar 

  • Sopko R, Huang D, Smith JC, Figeys D, Andrews BJ (2007) Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. EMBO J 26:4487–4500

    Article  PubMed  CAS  Google Scholar 

  • Steinberg G (2007) Hyphal growth; a tale of motors, lipids, and the Spitzenkorper. Eukaryot Cell 6:351–360

    Article  PubMed  CAS  Google Scholar 

  • Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA et al (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K et al (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Tanaka A, Scott B (2006) A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R et al (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108:2861–2866

    Article  PubMed  CAS  Google Scholar 

  • Takeshita N, Higashitsuji Y, Konzack S, Fischer R (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19:339–351

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloe festucae and perennial ryegrass. Mol Microbiol 68:1165–1178

    Article  PubMed  CAS  Google Scholar 

  • Timberlake WE (1990) Molecular genetics of Aspergillus development. Annu Rev Genet 24:5–36

    Article  PubMed  CAS  Google Scholar 

  • Toret CP, Drubin DG (2006) The budding yeast endocytic pathway. J Cell Sci 119:4585–4587

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay S, Shaw BD (2008) The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 68:690–705

    Article  PubMed  CAS  Google Scholar 

  • Valdez-Taubus J, Pelham HR (2003) Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13:1636–1640

    Article  Google Scholar 

  • Viestica A, Tang XZ, Oliferenko S (2008) The actomyosin ring recruits early secretory compartments to the division site in fission yeast. Mol Biol Cell 19:1125–1138

    Article  Google Scholar 

  • Wendland J (2003) Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Rep 4:200–204

    Article  PubMed  CAS  Google Scholar 

  • Wolkow TD, Harris SD, Hamer JE (1996) Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J Cell Sci 109:2179–2188

    PubMed  CAS  Google Scholar 

  • Ye X, Lee SL, Wolkow TD, McGuire SL, Hamer JE et al (1999) Interaction between developmental and cell cycle regulators is required for morphogenesis in Aspergillus nidulans. EMBO J 18:6994–7001

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Kono K, Lowery DM, Bartolini S, Yaffe MB et al (2006) Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science 313:108–111

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harris, S.D. (2012). Molecular Basis of Morphogenesis in Fungi. In: Pérez-Martín, J., Di Pietro, A. (eds) Morphogenesis and Pathogenicity in Fungi. Topics in Current Genetics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22916-9_1

Download citation

Publish with us

Policies and ethics