Skip to main content

Detachable Object Detection with Efficient Model Selection

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6819))

Abstract

We describe a computationally efficient scheme to perform model selection while simultaneously segmenting a short video stream into an unknown number of detachable objects. Detachable objects are regions of space bounded by surfaces that are surrounded by the medium other than for their region of support, and the region of support changes over time. These include humans walking, vehicles moving, etc. We exploit recent work on occlusion detection to bootstrap an energy minimization approach that is solved with linear programming. The energy integrates both appearance and motion statistics, and can be used to seed layer segmentation approaches that integrate temporal information on long timescales.

Research supported by ARO 56765, ONR N000140810414, AFOSR FA95500910427.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibson, J.J.: The ecological approach to visual perception. LEA (1984)

    Google Scholar 

  2. Wang, J., Adelson, E.: Representing moving images with layers. IEEE Transactions on Image Processing 3, 625–638 (1994)

    Article  Google Scholar 

  3. Jackson, J.D., Yezzi, A.J., Soatto, S.: Dynamic shape and appearance modeling via moving and deforming layers. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 427–438. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Jackson, J., Yezzi, A.J., Soatto, S.: Dynamic shape and appearance modeling via moving and deforming layers. Intl. J. of Comp. Vision 79(1), 71–84 (2008)

    Article  Google Scholar 

  5. Ayvaci, A., Raptis, M., Soatto, S.: Occlusion detection and motion estimation with convex optimization. In: Advances in Neural Information Processing Systems (2010)

    Google Scholar 

  6. Cremers, D., Soatto, S.: Motion competition: a variational approach to piecewise parametric motion segmentation. International Journal of Computer Vision 62, 249–265 (2005)

    Article  Google Scholar 

  7. Huang, Y., Liu, Q., Metaxas, D.: Video object segmentation by hypergraph cut. In: Proc. of the Conference on Computer Vision and Pattern Recognition, pp. 1738–1745 (2009)

    Google Scholar 

  8. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: robust video object cutout using localized classifiers. In: ACM SIGGRAPH (2009)

    Google Scholar 

  9. Unger, M., Mauthner, T., Pock, T., Bischof, H.: Tracking as segmentation of spatial-temporal volumes by anisotropic weighted TV. In: Proc of the Energy Minimization Methods in Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  10. Ince, S., Konrad, J.: Occlusion-aware optical flow estimation. IEEE Transactions on Image Processing 17, 1443–1451 (2008)

    Article  MathSciNet  Google Scholar 

  11. Ayvaci, A., Soatto, S.: Detachable object detection. Technical Report CSD100036, UCLA Computer Science Department (November 19, 2010)

    Google Scholar 

  12. Wang, J., Xu, Y., Shum, H., Cohen, M.: Video tooning. In: ACM SIGGRAPH (2004)

    Google Scholar 

  13. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1768–1783 (2006)

    Article  Google Scholar 

  14. Grunwald, P., Rissanen, J.: The Minimum Description Length Principle. The MIT Press, Cambridge (2007)

    Google Scholar 

  15. Dahleh, M.A., Diaz-Bobillo, I.J.: Control of uncertain systems: a linear programming approach. Prentice-Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  16. Leclerc, Y.: Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision 3, 73–102 (1989)

    Article  Google Scholar 

  17. Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy minimization with label costs. In: Proc. of the Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  18. Lim, Y., Jung, K., Kohli, P.: Energy minimization under constraints on label counts. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 535–551. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Yuan, J., Boykov, Y.: Tv-based image segmentation with label cost prior. In: Proc. of the Britih Machine Vision Conference (2010)

    Google Scholar 

  20. Schoenemann, T., Cremers, D.: High resolution motion layer decomposition using dual-space graph cuts. In: Proc. of the Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  21. Sun, D., Sudderth, E., Black, M.: Layered Image Motion with Explicit Occlusions, Temporal Consistency, and Depth Ordering. In: Advances in Neural Information Processing Systems (2010)

    Google Scholar 

  22. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Pawan Kumar, M., Torr, P., Zisserman, A.: Learning layered motion segmentations of video. International Journal of Computer Vision 76, 301–319 (2008)

    Article  Google Scholar 

  24. Irani, M., Peleg, S.: Motion analysis for image enhancement: Resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation 4, 324–324 (1993)

    Article  Google Scholar 

  25. Jepson, A.D., Fleet, D.J., Black, M.J.: A layered motion representation with occlusion and compact spatial support. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 692–706. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Ogale, A., Ferm, C., Aloimonos, Y.: Motion segmentation using occlusions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 988–992 (2005)

    Google Scholar 

  27. Stein, A., Stepleton, T., Hebert, M.: Towards unsupervised whole-object segmentation: Combining automated matting with boundary detection. In: Proc. of the Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  28. Apostoloff, N., Fitzgibbon, A.: Automatic video segmentation using spatiotemporal T-junctions. In: Proc. of the Britih Machine Vision Conference (2006)

    Google Scholar 

  29. Stein, A., Hebert, M.: Occlusion boundaries from motion: low-level detection and mid-level reasoning. International Journal of Computer Vision 82, 325–357 (2009)

    Article  Google Scholar 

  30. He, X., Yuille, A.: Occlusion boundary detection using pseudo-depth. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 539–552. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Apostoloff, N., Fitzgibbon, A.: Learning Spatiotemporal T-Junctions for Occlusion Detection. In: Proc. of the Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  32. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2002)

    Article  Google Scholar 

  33. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2002)

    Google Scholar 

  34. Morel, J., Salembier, P.: Monocular Depth by Nonlinear Diffusion. In: Proc. of the Indian Conference on Computer Vision, Graphics & Image Processing (2008)

    Google Scholar 

  35. Amer, M., Raich, R., Todorovic, S.: Monocular Extraction of 2.1D Sketch. In: Proc. of the International Conference on Image Processing (2010)

    Google Scholar 

  36. Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: Proc. of the International Conference on Computer Vision (2007)

    Google Scholar 

  37. Grant, M., Boyd, S.: Cvx: Matlab software for disciplined convex programming, version 1.21 (2010), http://cvxr.com/cvx

  38. Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: Proc. of the Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  39. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 530–549 (2004)

    Article  Google Scholar 

  40. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: An empirical evaluation. In: Proc. of the Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  41. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ayvaci, A., Soatto, S. (2011). Detachable Object Detection with Efficient Model Selection. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2011. Lecture Notes in Computer Science, vol 6819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23094-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23094-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23093-6

  • Online ISBN: 978-3-642-23094-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics