Skip to main content

Improving Depth Map Quality with Markov Random Fields

  • Conference paper
Image Processing and Communications Challenges 3

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 102))

Summary

Currently there is an increasing number of solutions adapting sterevision camera for depth perception. Thanks to the two slightly different projections of the same scene it is possible to estimate distance to particular object. However the commononly used real-time correlation-based solutions usually suffer from inaccuracy caused by low textured regions or occlusions. Therefore in this article an statistical model-based approach for depth estimation is proposed. It engages both stereovision camera and prior knowledge of scene structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saxena, A., Chung, S.H., Ng, A.Y.: Learning Depth from Single Monocular Images. Neural Information Processing Systems (NIPS) 18 (2005)

    Google Scholar 

  2. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology (1970)

    Google Scholar 

  3. Birchfield, S., Tomasi, C.: Depth Discontinuities by Pixel-to-Pixel Stereo. International Journal of Computer Vision 35(3), 269–293 (1999)

    Article  Google Scholar 

  4. Make3D project, http://make3d.cs.cornell.edu/

  5. Daniel, P., Huttenlocher, P., Felzenszwalb, B.: Efficient Belief Propagation for Early Vision. Efficient Belief Propagation for Early Vision (2006)

    Google Scholar 

  6. Pelcztnski, P.: Travel Aid System for the Blind. Image Processing and Communications Challenges, 324–333 (2009)

    Google Scholar 

  7. The Miniguide project homepage, http://www.gdp-research.com.au

  8. Sun, J., Li, Y., Kang, S., Shum, H.: Symmetric stereo matching for occlusion handling. In: CVPR, pp. II: 399–II: 406 (2005)

    Google Scholar 

  9. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts, pp. II: 508–II: 515 (2001)

    Google Scholar 

  10. Sivic, J., Zisserman, A.: Efficient Visual Search for Objects in Videos. Proceedings of the IEEE (2008)

    Google Scholar 

  11. Kirasic, D., Basch, D.: Ontology-Based Design Pattern Recognition. LNCS (2009)

    Google Scholar 

  12. Francois, A.R.J., Nevatia, R., Hobbs, J., Bolles, R.C.: VERL: an ontology framework for representing and annotating video events. IEEE MultiMedia 12(4), 76–86 (2005)

    Article  Google Scholar 

  13. Latfi, F., Lefebvre, B., Descheneaux, C.: Ontology-based management of the telehealth smart home, dedicated to elderly in loss of cognitive autonomy. In: CEUR Workshop Proceedings, vol. 258 (2007)

    Google Scholar 

  14. Torralba, R., Fergus, Weiss, Y.: Small codes and large databases for recognition. In CVPR (2008)

    Google Scholar 

  15. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR (2008)

    Google Scholar 

  16. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. In: CVPR, pp. 1:261–1:268 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kozik, R. (2011). Improving Depth Map Quality with Markov Random Fields. In: Choraƛ, R.S. (eds) Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23154-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23154-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23153-7

  • Online ISBN: 978-3-642-23154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics