Skip to main content

A Numerical Study of Geometric Corrections for Representation Optimisation

  • Chapter
  • First Online:
Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 597 Accesses

Abstract

The parallel transport of tensors such as the density kernel and Hamiltonian has been shown in the previous chapter to contribute non-zero correction terms when the support functions representing single-particle orbitals in density-matrix based ab initio calculations are allowed to change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A set of RRKJ Pseudopotentials were generated using the Opium code, http://opium.sourceforge.net, using the GGA input parameters available therein, optimized for a minimum plane-wave cutoff of \(680\,\hbox{eV}\), albeit with a scalar-relativistic correction for all species and, for the transition-metal ions, some slight modifications to the core radii and a non-linear core correction of Fuchs-Scheffler characteristic radius 1.3a.u.

References

  1. C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, Introducing ONETEP: Linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 084119 (2005)

    Article  ADS  Google Scholar 

  2. P.D. Haynes, C.-K. Skylaris, A.A. Mostofi, M.C. Payne, Elimination of basis set superposition error in linear-scaling density-functional calculations with local orbitals optimised in situ. Chem. Phys. Lett. 422, 345 (2006)

    Article  ADS  Google Scholar 

  3. F. Mauri, G. Galli, R. Car, Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys. Rev. B 47(15), 9973 (1993)

    Article  ADS  Google Scholar 

  4. F. Mauri, G. Galli, Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B 50(7), 4316 (1994)

    Article  ADS  Google Scholar 

  5. J. Kim, F. Mauri, G. Galli, Total-energy global optimizations using nonorthogonal localized orbitals. Phys. Rev. B 52(3), 1640 (1995)

    Article  ADS  Google Scholar 

  6. P. Ordejón, D.A. Drabold, R.M. Martin, M.P. Grumbach, Linear system-size scaling methods for electronic-structure calculations. Phys. Rev. B 51(3), 1456 (1995)

    Article  ADS  Google Scholar 

  7. C.-K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Diéguez, M.C. Payne, Nonorthogonal generalized Wannier function pseudopotential plane-wave method. Phys. Rev. B 66(3), 035119 (2002)

    Article  ADS  Google Scholar 

  8. G. Malloci, G. Mulas, G. Cappellini, C. Joblin, Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states −1, 0, +1, and +2. Chem. Phys. 34(1-3), 43 (2007)

    Article  ADS  Google Scholar 

  9. T.A. Niehaus, M. Rohlfing, F. Della Sala, A. Di Carlo, T. Frauenheim, Quasiparticle energies for large molecules: a tight-binding-based Green’s-function approach. Phys. Rev. A 71(2), 022508 (2005)

    Article  ADS  Google Scholar 

  10. P. Elliott, F. Furche,K. Burke. Excited states from time-dependent density functional theory. Reviews in Computational Chemistry (Wiley, 2009), pp. 91–165

    Google Scholar 

  11. A.A. Mostofi, P.D. Haynes, C.-K. Skylaris, M.C. Payne, Preconditioned interative minimisation for linear-scaling electronic structure calculations. J. Chem. Phys. 119, 8842 (2003)

    Article  ADS  Google Scholar 

  12. D. Baye, P.-H. Heenen, Generalised meshes for quantum mechanical problems. J. Phys. A: Math. Gen. 19, 2041 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  14. X.-P. Li, R.W. Nunes, D. Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B. 47(16), 10891 (1993)

    Article  ADS  Google Scholar 

  15. R.W. Nunes, D. Vanderbilt, Generalization of the density-matrix method to a nonorthogonal basis. Phys. Rev. B 50(23), 17611 (1994)

    Article  ADS  Google Scholar 

  16. M.S. Daw, Model for energetics of solids based on the density matrix. Phys. Rev. B 47(16), 10895 (1993)

    Article  ADS  Google Scholar 

  17. R. McWeeny, Some recent advances in density matrix theory. Rev. Mod. Phys. 32(2), 335 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  18. T. Ozaki, Efficient recursion method for inverting an overlap matrix. Phys. Rev. B 64(19), 195110 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Daniel O’Regan .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Regan, D.D. (2012). A Numerical Study of Geometric Corrections for Representation Optimisation. In: Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23238-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23238-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23237-4

  • Online ISBN: 978-3-642-23238-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics