Skip to main content

Muscarinic Agonists and Antagonists in Schizophrenia

Recent Therapeutic Advances and Future Directions

  • Chapter
  • First Online:
Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

Existing therapies for schizophrenia have limited efficacy, and significant residual positive, negative, and cognitive symptoms remain in many individuals with the disorder even after treatment with the current arsenal of antipsychotic drugs. Preclinical and clinical data suggest that selective activation of the muscarinic cholinergic system may represent novel therapeutic mechanisms for the treatment of schizophrenia. The therapeutic relevance of earlier muscarinic agonists was limited by their lack of receptor selectivity and adverse event profile arising from activation of nontarget muscarinic receptors. Recent advances in developing compounds that are selective to muscarinic receptor subtypes or activate allosteric receptor sites offer tremendous promise for therapeutic targeting of specific muscarinic receptor subtypes in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abood LG, Biel JH (1962) Anticholinergic psychototmimetic agents. Int Rev Neurobiol 4:217–273

    Article  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE et al (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    Article  PubMed  CAS  Google Scholar 

  • Andersen MB, Fink-Jensen A, Peacock L et al (2003) The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28:1168–1175

    PubMed  CAS  Google Scholar 

  • Andreasen NC, O’Leary DS, Flaum M et al (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Basile AS, Fedorova I, Zapata A et al (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci U S A 99:11452–11457

    Article  PubMed  CAS  Google Scholar 

  • Bellack AS, Gold JM, Buchanan RW (1999) Cognitive rehabilitation for schizophrenia: problems, prospects, and strategies. Schizophr Bull 25:257–274

    PubMed  CAS  Google Scholar 

  • Billard W, Binch H 3rd, Crosby G et al (1995) Identification of the primary muscarinic autoreceptor subtype in rat striatum as M2 through a correlation of in vivo microdialysis and in vitro receptor binding data. J Pharmacol Exp Ther 273:273–279

    PubMed  CAS  Google Scholar 

  • Blaha CD, Allen LF, Das S et al (1996) Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 16:714–722

    PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Levey AI et al (1997) (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    Article  PubMed  CAS  Google Scholar 

  • Bolden C, Cusack B, Richelson E (1991) Clozapine is a potent and selective muscarinic antagonist at the five cloned human muscarinic acetylcholine receptors expressed in CHO-K1 cells. Eur J Pharmacol 192:205–206

    Article  PubMed  CAS  Google Scholar 

  • Bradley SR, Lameh J, Ohrmund L et al (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373

    Article  PubMed  CAS  Google Scholar 

  • Brady AE, Jones CK, Bridges TM et al (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327:941–953

    Article  PubMed  CAS  Google Scholar 

  • Braver TS, Cohen JD (2000) On the control of control: the role of dopamine in regulating prefrontal function and working memory. In: Monsell S, Driver J (eds) Control of cognitive processes: attention and performance XVIII. MIT Press, Cambridge

    Google Scholar 

  • Bridges TM, Marlo JE, Niswender CM (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem 52:3445–3448

    Article  PubMed  CAS  Google Scholar 

  • Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–690

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Wong DT, Mitch CH et al (1994) Neurochemical effects of the M1 muscarinic agonist xanomeline (LY246708/NNC11-0232). J Pharmacol Exp Ther 269:282–289

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Whitesitt CA, Shannon HE et al (1997) Xanomeline: a selective muscarinic agonist for the treatment of Alzheimers disease. Drug Dev Res 40:158–177

    Article  CAS  Google Scholar 

  • Bymaster FP, Shannon HE, Rasmussen K et al (1998) Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane. Eur J Pharmacol 356:109–119

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Felder C, Ahmed S et al (2002) Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 1:163–181

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Felder CC, Tzavara E (2003a) Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1125–1143

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, McKinzie DL, Felder CC et al (2003b) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28:437–442

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Carter PA, Yamada M et al (2003c) Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur J Neurosci 17:1403–1410

    Article  PubMed  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P et al (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126

    Article  PubMed  CAS  Google Scholar 

  • Carey GJ, Billard W, Binch H 3rd et al (2001) SCH 57790, a selective muscarinic M(2) receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur J Pharmacol 431:189–200

    Article  PubMed  CAS  Google Scholar 

  • Carter CS, Perlstein P, Ganguli R et al (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155:1285–1287

    PubMed  CAS  Google Scholar 

  • Caulfield MP (1993) Muscarinic receptors – characterization, coupling and function. Pharmacol Ther 58:319–379

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP, Felder CC. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA. 2008 Aug 5;105(31):10978–10983. Epub 2008 Aug 4. PubMed PMID: 18678919; PubMed Central PMCID: PMC2495016

    Google Scholar 

  • Christie JE, Shering A, Ferguson J et al (1981) Physostigmine and arecoline: effects of intravenous infusions in Alzheimer presenile dementia. Br J Psychiatry 138:46–50

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov 1:198–210

    Article  PubMed  CAS  Google Scholar 

  • Clader JW, Wang Y (2005) Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 11:3353–3361

    Article  PubMed  CAS  Google Scholar 

  • Clarke LA, Cassidy CW, Catalano G et al (2004) Psychosis induced by smoking cessation clinic administered anticholinergic overload. Ann Clin Psychiatry 16:171–175

    Article  PubMed  Google Scholar 

  • Conn PJ, Jones CK, Lindsley CW (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155

    Article  PubMed  CAS  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL et al (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388

    Article  PubMed  CAS  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL et al (2001) Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 158:918–925

    PubMed  CAS  Google Scholar 

  • Cui YH, Si W, Yin L et al (2008) A novel derivative of xanomeline improved memory function in aged mice. Neurosci Bull 24:251–257

    Article  PubMed  CAS  Google Scholar 

  • Dean B, Crook JM, Opeskin K et al (1996) The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1:54–58

    PubMed  CAS  Google Scholar 

  • Dean B, Crook JM, Pavey G et al (2000) Muscarinic1 and 2 receptor mRNA in the human caudate-putamen: no change in m1 mRNA in schizophrenia. Mol Psychiatry 5:203–207

    Article  PubMed  CAS  Google Scholar 

  • Dean B, McLeod M, Keriakous D et al (2002) Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Dean B, Bymaster FP, Scarr E (2003) Muscarinic receptors in schizophrenia. Curr Mol Med 3:419–426

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Huang XF. Decreased density of muscarinic receptors in the superior temporal gyrusin schizophrenia. J Neurosci Res 2005 Sep 15;81(6):883–890. PubMed PMID: 16041805

    Google Scholar 

  • Dickinson D, Coursey RD (2002) Independence and overlap among neurocognitive correlates of community functioning in schizophrenia. Schizophr Res 56:161–170

    Article  PubMed  Google Scholar 

  • Doods HN, Mathy MJ, Davidesko D et al (1987) Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J Pharmacol Exp Ther 242:257–262

    PubMed  CAS  Google Scholar 

  • Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Bymaster FP, Ward J et al (2000) Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 43:4333–4353

    Article  PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Kristensen P, Shannon HE et al (1998) Muscarinic agonists exhibit functional dopamine antagonism in unilaterally 6-OHDA lesioned rats. Neuroreport 9:3481–3486

    Article  PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Fedorova I, Wortwein G (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74:91–96

    Article  PubMed  CAS  Google Scholar 

  • Fisher CM (1991) Visual hallucinations on eye closure associated with atropine toxicity. A neurological analysis and comparison with other visual hallucinations. Can J Neurol Sci 18:18–27

    PubMed  CAS  Google Scholar 

  • Fisher A (2008) Cholinergic treatments with emphasis on M1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5:433–442

    Article  PubMed  CAS  Google Scholar 

  • Fisahn A, Yamada M, Duttaroy A, Gan JW, Deng CX, McBain CJ, Wess J. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 2002 Feb 14;33(4):615–624. PubMed PMID:11856534

    Google Scholar 

  • Forster GL, Blaha CD (2003) Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 17:751–762

    Article  PubMed  Google Scholar 

  • Forster GL, Yeomans JS, Takeuchi J et al (2002) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 22:RC190

    PubMed  Google Scholar 

  • Fredrickson A, Snyder PJ, Cromer J (2008) The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol 23:425–436

    Article  PubMed  CAS  Google Scholar 

  • Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 174:45–53

    Article  CAS  Google Scholar 

  • Frommann I, Pukrop R, Brinkmeyer J et al (2011) Neuropsychological profiles in different at-risk states of psychosis: executive control impairment in the early – and additional memory dysfunction in the late – prodromal state. Schizophr Bull 37(4):861–873

    Article  PubMed  Google Scholar 

  • Gerber DJ, Sotnikova TD, Gainetdinov RR et al (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 98:15312–15317

    Article  PubMed  CAS  Google Scholar 

  • Gershon S, Olariu J (1960) JB 329 degrees—a new spychotomimetic, its antagonism by tetrahydroaminacrin and its comparison with LSD, mescaline and sernyl. J Neuropsychiatr 1:283–292

    PubMed  CAS  Google Scholar 

  • Giovannini MG (2006) The role of the extracellular signal-regulated kinase pathway in memory encoding. Rev Neurosci 17:619–634

    Article  PubMed  CAS  Google Scholar 

  • Gold JM, Goldberg RW, McNary SW et al (2002) Cognitive correlates of job tenure among patients with severe mental illness. Am J Psychiatry 159:1395–1402

    Article  PubMed  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E et al (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 96:10483–10488

    Article  PubMed  CAS  Google Scholar 

  • Granacher RP, Baldessarini RJ (1975) Physostigmine. Its use in acute anticholinergic syndrome with antidepressant and antiparkinson drugs. Arch Gen Psychiatry 32:375–380

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Moran PM, Grigoryan G (1997) Latent inhibition: the nucleus accumbens connection revisited. Behav Brain Res 88:27–34

    Article  PubMed  CAS  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    PubMed  CAS  Google Scholar 

  • Hamilton SE, Loose MD, Qi M et al (1997) Disruption of the M1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci U S A 94:13311–13316

    Article  PubMed  CAS  Google Scholar 

  • Han M, Newell K, Zavitsanou K et al (2008) Effects of antipsychotic medication on muscarinic M1 receptor mRNA expression in the rat brain. J Neurosci Res 86:457–464

    Article  PubMed  CAS  Google Scholar 

  • Harries MH, Samson NA, Cilia J et al (1998) The profile of sabcomeline (SB-202026), a functionally selective M1 receptor partial agonist, in the marmoset. Br J Pharmacol 124:409–415

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JN, Butera JA, Carrick T et al (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56

    Article  PubMed  CAS  Google Scholar 

  • Hemstapat K, Da Costa H, Nong Y et al (2007) A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. J Pharmacol Exp Ther 322:254–264

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Mann L, Laws KR et al (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110:243–256

    Article  PubMed  CAS  Google Scholar 

  • Hirsch S, Barnes TRE (1995) The clinical treatment of schizophrenia with antipsychotic medication. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell Science, Oxford

    Google Scholar 

  • Hoffman DC, Donovan H (1995) Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology 120:128–133

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  Google Scholar 

  • Hulme EC, Birdsall NJ, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Dai J, O’Laughlin IA et al (2002) Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 26:325–339

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Eberle EL, Shaw DB et al (2005) Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J Pharmacol Exp Ther 312:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Brady AE, Davis AA et al (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433

    Article  PubMed  CAS  Google Scholar 

  • Joseph MH, Peters SL, Moran PM et al (2000) Modulation of latent inhibition in the rat by altered dopamine transmission in the nucleus accumbens at the time of conditioning. Neuroscience 101:921–930

    Article  PubMed  CAS  Google Scholar 

  • Joyce EM, Koob GF (1981) Amphetamine-, scopolamine- and caffeine-induced locomotor activity following 6-hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacology (Berl) 73:311–313

    Article  CAS  Google Scholar 

  • Kaiser J, Lutzenberger W (2005) Cortical oscillatory activity and the dynamics of auditory memory processing. Rev Neurosci 16:239–254

    Article  PubMed  Google Scholar 

  • Kitaichi K, Hori T, Srivastava LK et al (1999a) Antisense oligodeoxynucleotides against the muscarinic M2, but not M4, receptor supports its role as autoreceptors in the rat hippocampus. Brain Res Mol Brain Res 67:98–106

    Article  PubMed  CAS  Google Scholar 

  • Kitaichi K, Day JC et al (1999b) A novel muscarinic M(4) receptor antagonist provides further evidence of an autoreceptor role for the muscarinic M(2) receptor sub-type. Eur J Pharmacol 383:53–56

    Article  PubMed  CAS  Google Scholar 

  • Kuroki T, Meltzer HY, Icikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288:774–781

    PubMed  CAS  Google Scholar 

  • Lachowicz JE, Duffy RA, Ruperto V, Kozlowski J, Zhou G, Clader J, Billard W, Binch H 3rd, Crosby G, Cohen-Williams M, Strader CD, Coffin V. Facilitation of acetylcholine release and improvement in cognition by a selective M2 muscarinic antagonist, SCH 72788. Life Sci 2001 Apr 27;68(22–23):2585–2592. PubMed PMID: 11392630

    Google Scholar 

  • Lazaris A, Bertrand F, Lazarus C, Galani R, Stemmelin J, Poirier R, Kelche C, Cassel JC. Baseline and 8-OH-DPAT-induced release of acetylcholine in the hippocampus of aged rats with different levels of cognitive dysfunction. Brain Res 2003 Mar 28;967(1–2):181–190. PubMed PMID: 12650979

    Google Scholar 

  • Langmead CJ, Austin NE, Branch CL (2008a) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 154:1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Langmead CJ, Watson J, Reavill C (2008b) Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117:232–243

    Article  PubMed  CAS  Google Scholar 

  • Leach K, Loiacono RE, Felder CC, McKinzie DL, Mogg A, Shaw DB, Sexton PM, Christopoulos A. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology. 2010 Mar; 35(4):855–869. Epub 2009 Nov 25. PubMed PMID: 19940843; PubMed Central PMCID: PMC3055367

    Google Scholar 

  • Levey AI (1993) Immunological localization of M1–M5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF et al (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  • Li Z, Huang M, Ichikawa J et al (2005) N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 30:1986–1995

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Bonhaus DW, Huang M et al (2007) AC260584 (4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one), a selective muscarinic M1 receptor agonist, increases acetylcholine and dopamine release in rat medial prefrontal cortex and hippocampus. Eur J Pharmacol 572:129–137

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Snigdha S, Roseman AS et al (2008) Effect of muscarinic receptor agonists xanomeline and sabcomeline on acetylcholine and dopamine efflux in the rat brain; comparison with effects of 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC260584) and N-desmethylclozapine. Eur J Pharmacol 596:89–97

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA 2009 Sep 15;106(37):15950–15955. Epub 2009 Aug 26. Erratum in: Proc Natl Acad Sci USA 2009 Oct 20;106(42):18040. Seager, Matthew [corrected to Seager, Matthew A]. PubMed PMID: 19717450; PubMed Central PMCID:PMC2732705

    Google Scholar 

  • Mancama D, Arranz MJ, Landau S et al (2003) Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 119B:2–6

    Article  PubMed  CAS  Google Scholar 

  • Marino MJ, Conn PJ (2002) Direct and indirect modulation of the N-methyl D-aspartate receptor. Curr Drug Target CNS Neurol Disord 1:1–16

    Article  CAS  Google Scholar 

  • Marino MJ, Rouse ST, Levey AI et al (1998) Activation of the genetically defined M1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci U S A 95:11465–11470

    Article  PubMed  CAS  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–760

    Article  PubMed  CAS  Google Scholar 

  • Mego DM, Omori JM, Hanley JF (1988) Transdermal scopolamine as a cause of transient psychosis in two elderly patients. South Med J 81:394–395

    Article  PubMed  CAS  Google Scholar 

  • Meyer EM, Otero DH (1985) Pharmacological and ionic characterizations of the muscarinic receptors modulating [3H]acetylcholine release from rat cortical synaptosomes. J Neurosci 5:1202–1207

    PubMed  CAS  Google Scholar 

  • Minzenberg MJ, Poole JH, Benton C et al (2004) Association of anticholinergic load with impairment of complex attention and memory in schizophrenia. Am J Psychiatry 161:116–124

    Article  PubMed  Google Scholar 

  • Mirza N, Peters D, Sparks RG (2003) Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 9:159–186

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 2001 Jul 15;21(14):5239–5250. PubMed PMID: 11438599

    Google Scholar 

  • Moser PC, Hitchcock JM, Lister SD et al (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307

    Article  PubMed  CAS  Google Scholar 

  • Neubauer H, Gershon S, Sundland DM (1966) Differential responses to an anticholinergic psychotomimetic (Ditran) in a mixed psychiatric population. Psychiatr Neurol (Basel) 151:65–80

    Article  CAS  Google Scholar 

  • Newell KA, Zavitsanou K, Jew SK et al (2007) Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:225–233

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Maullu C, Onali P (1999) Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Neuropsychopharmacology 20:263–270

    Article  PubMed  CAS  Google Scholar 

  • Perlstein WM, Carter CS, Noll DC et al (2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 158:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH (1995) Acetylcholine and hallucinations: disease-related compared to drug-induced alterations in human consciousness. Brain Cogn 28:240–258

    Article  PubMed  CAS  Google Scholar 

  • Perry KW, Nisenbaum LK, George CA et al (2001) The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex. Biol Psychiatry 49:716–725

    Article  PubMed  CAS  Google Scholar 

  • Quirion R, Wilson A, Rowe W et al (1995) Facilitation of acetylcholine release and cognitive performance by an M(2)-muscarinic receptor antagonist in aged memory-impaired. J Neurosci 15:1455–1462

    PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW et al (2003) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 160:118–127

    Article  PubMed  Google Scholar 

  • Raedler TJ, Bymaster FP, Tandon R et al (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246

    PubMed  CAS  Google Scholar 

  • Raffa RB (2009) The M5 muscarinic receptor as possible target for treatment of drug abuse. J Clin Pharm Ther 34:623–629

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Fink-Jensen A, Sauerberg P et al (2001) The muscarinic receptor agonist BuTAC, a novel potential antipsychotic, does not impair learning and memory in mouse passive avoidance. Schizophr Res 49:193–201

    Article  PubMed  CAS  Google Scholar 

  • Reichenberg A, Caspi A, Harrington H et al (2010) Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. Am J Psychiatry 167:160–169

    Article  PubMed  Google Scholar 

  • Riehemann S, Volz HP, Stützer P (2001) Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin card sorting test – a fMRI study. Eur Arch Psychiatry Clin Neurosci 251(2):66–71

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AL, Nong Y, Sekaran NK (2005) A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol Pharmacol 68:1793–1802

    PubMed  CAS  Google Scholar 

  • Rouse ST, Marino MJ, Potter LT et al (1999) Muscarinic receptor subtypes involved in hippocampal circuits. Life Sci 64:501–509

    Article  PubMed  CAS  Google Scholar 

  • Rouse ST, Edmunds SM, Yi H (2000) Localization of M(2) muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neurosci Lett 284:182–186

    Article  PubMed  CAS  Google Scholar 

  • Rowe WB, O’Donnell JP, Pearson D et al (2003) Long-term effects of BIBN-99, a selective muscarinic M2 receptor antagonist, on improving spatial memory performance in aged cognitively impaired rats. Behav Brain Res 145:171–178

    Article  PubMed  CAS  Google Scholar 

  • Russig H, Murphy CA, Feldon J (2002) Clozapine and haloperidol reinstate latent inhibition following its disruption during amphetamine withdrawal. Neuropsychopharmacology 26:765–777

    Article  PubMed  CAS  Google Scholar 

  • Scarr E, Sundram S, Keriakous D (2007) Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatr 61:1161–1170

    Article  CAS  Google Scholar 

  • Schwarz RD, Callahan MJ, Coughenour LL et al (1999) Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical and in vivo characterization. J Pharmacol Exp Ther 291:812–822

    PubMed  CAS  Google Scholar 

  • Seeger T, Fedorova I, Zheng F et al (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24:10117–10127

    Article  PubMed  CAS  Google Scholar 

  • Sellin AK, Shad M, Tamminga C (2008) Muscarinic agonists for the treatment of cognition in schizophrenia. CNS Spectr 13:985–996

    PubMed  Google Scholar 

  • Senda T, Matsuno K, Kobayashi T et al (1997) Reduction of scopolamine-induced impairment of passive-avoidance performance by s-receptor agonist in mice. Physiol Behav 61:257–264

    Article  PubMed  CAS  Google Scholar 

  • Shannon HE, Hart JC, Bymaster FP et al (1999) Muscarinic receptor agonists, like dopamine receptor antagonist antipsychotics, inhibit conditioned avoidance response in rats. J Pharmacol Exp Ther 290:901–907

    PubMed  CAS  Google Scholar 

  • Shannon HE, Rasmussen K, Bymaster FP et al (2000) Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249–259

    Article  PubMed  CAS  Google Scholar 

  • Shekhar A, Potter WZ, Lightfoot J et al (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    Article  PubMed  Google Scholar 

  • Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM, Jones CK, Niswender CM, Weaver CD, Lindsley CW, Conn PJ. A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol 2009 Aug;76(2):356–368. Epub 2009 Apr 30. PubMed PMID: 19407080; PubMed Central PMCID: PMC2713127

    Google Scholar 

  • Shirey JK, Xiang Z, Orton D et al (2008) An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4:42–50

    Article  PubMed  CAS  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ et al (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286

    Article  PubMed  CAS  Google Scholar 

  • Shinoe T, Matsui M, Taketo MM, Manabe T. Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci 2005 Nov 30;25(48):11194–11200. PubMed PMID: 16319319

    Google Scholar 

  • Schmitt GJ, Meisenzahl EM, Dresel S, Tatsch K, Rossmuller B, Frodl T, Preuss UW, Hahn K, Moller HJ. Striatal dopamine D2 receptor binding of risperidone in schizophrenic patients as assessed by 123I-iodobenzamide SPECT: a comparative study with olanzapine. J Psychopharmacol 2002 Sep;16(3):200–206. PubMed PMID: 12236625

    Google Scholar 

  • Spalding TA, Ma J-N, Ott TR et al (2006) Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol 70:1974–1983

    Article  PubMed  CAS  Google Scholar 

  • Spencer KM, Nestor PG, Niznikiewicz MA et al (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23:7407–7411

    PubMed  CAS  Google Scholar 

  • Spencer KM, Nestor PG, Perlmutter R et al (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci U S A 101:17288–17293

    Article  PubMed  CAS  Google Scholar 

  • Stanhope KJ, Mirza NR, Bickerdike MJ et al (2001) The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther 299:782–792

    PubMed  CAS  Google Scholar 

  • Stoll C, Schwarzwälder U, Johann S et al (2003) Characterization of muscarinic autoreceptors in the rabbit hippocampus and caudate nucleus. Neurochem Res 28:413–417

    Article  PubMed  CAS  Google Scholar 

  • Stahl E, Ellis J. Novel allosteric effects of amiodarone at the muscarinic M5 receptor. J Pharmacol Exp Ther 2010 Jul;334(1):214–222. Epub 2010 Mar 26. PubMed PMID: 20348203; PubMed Central PMCID: PMC2912050

    Google Scholar 

  • Sur C, Kinney GG (2005) Selective Targeting of Muscarinic Receptors: Novel Therapeutic Approaches for Psychotic Disorders. Current Neuropharmacology 3:63–71

    Google Scholar 

  • Sur C, Mallorga PJ, Wittmann M et al (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA 100:13674–13679

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ et al (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    PubMed  CAS  Google Scholar 

  • Vannucchi MG, Pepeu G. Muscarinic receptor modulation of acetylcholine release from rat cerebral cortex and hippocampus. Neurosci Lett 1995 Apr 28;190(1):53–56. PubMed PMID: 7624055

    Google Scholar 

  • Vannucchi MG, Scali C, Kopf SR et al (1997) Selective muscarinic antagonists differentially affect in vivo acetylcholine release and memory performances of young and aged rats. Neuroscience 79:837–846

    Article  PubMed  CAS  Google Scholar 

  • Vanover KE, Veinbergs I, Davis RE (2008) Antipsychotic-like behavioral effects and cognitive enhancement by a potent and selective muscarinic M-sub-1 receptor agonist, AC-260584. Behav Neurosci 122:570–575

    Article  PubMed  CAS  Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res 21:30–46

    Article  PubMed  CAS  Google Scholar 

  • Vilaró MT, Palacios JM, Mengod G (1990) Localization of M5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    Article  PubMed  Google Scholar 

  • Wall SJ, Yasuda RP, Hory F (1991) Production of antisera selective for M1 muscarinic receptors using fusion proteins: distribution of M1 receptors in rat brain. Mol Pharmacol 39:643–649

    PubMed  CAS  Google Scholar 

  • Wang Y, Chackalamannil S, Hu Z et al (2002) Improving the oral efficacy of CNS drug candidates: discovery of highly orally efficacious piperidinyl piperidine M2 muscarinic receptor antagonists. J Med Chem 45:5415–5418

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ng K, Hayes D et al (2004) Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology 29:2126–2139

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–124

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci U S A 87:7050–7054

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Meltzer HY, Veinbergs I et al (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacol 177:207–216

    Article  CAS  Google Scholar 

  • Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69–99

    PubMed  CAS  Google Scholar 

  • Wess J, Duttaroy A, Zhang W et al (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors Channels 9:279–290

    Article  PubMed  CAS  Google Scholar 

  • Wienrich M, Ceci A, Ensinger HA et al (2002) Talsaclidine (WAL 2014 FU): a muscarinic M1 receptor agonist for the treatment of Alzheimer’s disease. Drug Develop Res 56:321–334

    Article  CAS  Google Scholar 

  • Williams LM, Whitford TJ, Flynn G et al (2008) General and social cognition in first episode schizophrenia: identification of separable factors and prediction of functional outcome using the IntegNeuro test battery. Schizophr Res 99:182–191

    Article  PubMed  Google Scholar 

  • Winkler J, Thal LJ, Gage FH et al (1998) Cholinergic strategies for Alzheimer’s disease. J Mol Med 76:555–567

    Article  PubMed  CAS  Google Scholar 

  • Wolkin A, Sanfilipo M, Wolf AP et al (1992) Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry 49:959–965

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS (1995) Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology 12:3–16

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS, Forster G, Blaha C (2001) M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci 68:2449–2456

    Article  PubMed  CAS  Google Scholar 

  • Zavitsanou K, Katsifis A, Mattner F et al (2004) Investigation of M1/M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625

    Article  PubMed  CAS  Google Scholar 

  • Zavitsanou K, Katsifis A, Yu Y et al (2005) M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 65:397–403

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Yamada M, Gomeza J et al (2002a) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knockout mice. J Neurosci 22:6347–6352

    PubMed  CAS  Google Scholar 

  • Zhang W, Basile AS, Gomeza J et al (2002b) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 22:1709–1717

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anantha Shekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bolbecker, A.R., Shekhar, A. (2012). Muscarinic Agonists and Antagonists in Schizophrenia. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_8

Download citation

Publish with us

Policies and ethics