Skip to main content

A Fitness Granulation Approach for Large-Scale Structural Design Optimization

  • Chapter
Variants of Evolutionary Algorithms for Real-World Applications

Abstract

The complexity of large-scale mechanical optimization problems is partially due to the presence of high-dimensional design variables, the nature of the design variables, and the high computational cost of the finite element simulations needed to evaluate the fitness of candidate solutions. Evolutionary algorithms are ruled by competitive games of survival and not merely by absolute measures of fitness. They can also exploit the robustness of evolution against uncertainties in the fitness function evaluations. This chapter takes up the complexity challenge of mechanical optimization problems by proposing a new fitness granulation approach that attempts to cope with several difficulties of fitness approximation methods that have been reported in the specialized literature. The approach is based on adaptive fuzzy fitness granulation having as its main aim to strike a balance between the accuracy and the utility of the computations. The adaptation algorithm adjusts the number and size of the granules according to the perceived performance and level of convergence attained. Experimental results show that the proposed method accelerates the convergence towards solutions when compared to the performance of other, more popular approaches. This suggests its applicability to other complex finite element-based engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reddy, J.: Introduction to the Finite Element Method. McGraw-Hill, New York (1993)

    Google Scholar 

  2. Papadrakakis, M., Lagaros, N.D., Kokossalakis, G.: Evolutionary Algorithms Applied to Structural Optimization Problems. In: High Performance Computing for Computational Mechanics, pp. 207–233 (2000)

    Google Scholar 

  3. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer-Verlag New York, Inc., New York (1994)

    MATH  Google Scholar 

  4. Walker, M., Smith, R.E.: A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Composite Structures 62(1), 123–128 (2003)

    Article  Google Scholar 

  5. Abe, A., Kamegawa, T., Nakajima, Y.: Optimization of construction of tire reinforcement by genetic algorithm. Optimization and Engineering 5(1), 77–92 (2003)

    Article  Google Scholar 

  6. Giger, M., Ermanni, P.: Development of CFRP racing motorcycle rims using a heuristic evolutionary algorithm approach. Structural and Multidisciplinary Optimization 30(1), 54–65 (2005)

    Article  Google Scholar 

  7. Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)

    Article  Google Scholar 

  8. Mackerle, J.: Smart materials and structures–a finite element approach–an addendum: a bibliography (1997- 2002). Modelling and Simulation in Materials Science and Engineering 11(5), 707–744 (2003)

    Article  Google Scholar 

  9. Joseffsson, L., Persson, P.: Conformal Array Antenna Theory and Design. IEEE Press Series on Electromagnetic Wave Theory. Wiley-IEEE Press (2005)

    Google Scholar 

  10. Liew, K.M., He, X.Q., Ray, T.: On the use of computational intelligence in the optimal shape control of functionally graded smart plates. Computer Methods in Applied Mechanics and Engineering 193(42-44), 4475–4492 (2004)

    Article  MATH  Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co., Reading (1989)

    MATH  Google Scholar 

  12. Furuya, H., Haftka, R.T.: Locating actuators for vibration suppression on space trusses by genetic algorithms, vol. 38. ASME-Publications-AD (1993)

    Google Scholar 

  13. Rodríguez, J.E., Medaglia, A.L., Coello Coello, C.A.: Design of a motorcycle frame using neuroacceleration strategies in MOEAs. Journal of Heuristics 15(2), 177–196 (2009)

    Article  MATH  Google Scholar 

  14. Lemonge, A., Barbosa, H., Fonseca, L.: A genetic algorithm for the design of space framed structures. In: XXIV CILAMCE–Iberian Latin-American Congress on Computational Methods in Engineering, Ouro Preto, Brazil (2003)

    Google Scholar 

  15. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing 9(1), 3–12 (2005)

    Article  Google Scholar 

  16. Smith, R., Dike, B., Stegmann, S.: Fitness inheritance in genetic algorithms. In: Proceedings of ACM Symposiums on Applied Computing, pp. 345–350. ACM, New York (1995)

    Google Scholar 

  17. Zhang, X., Julstrom, B., Cheng, W.: Design of vector quantization codebooks using a genetic algorithm. In: Proceedings of the IEEE Conference on Evolutionary Computation, pp. 525–529. IEEE, Los Alamitos (1997)

    Google Scholar 

  18. Salami, M., Hendtlass, T.: A fast evaluation strategy for evolutionary algorithms. Applied Soft Computing 2, 156–173 (2003)

    Article  Google Scholar 

  19. Pelikan, M., Sastry, K.: Fitness inheritance in the Bayesian optimization algorithms. In: Genetic and Evolutionary Computation Conference, pp. 48–59. Springer, Heidelberg (2004)

    Google Scholar 

  20. Reyes Sierra, M., Coello Coello, C.A.: Fitness Inheritance in Multi-Objective Particle Swarm Optimization. In: 2005 IEEE Swarm Intelligence Symposium (SIS 2005), pp. 116–123. IEEE Press, USA (2005)

    Chapter  Google Scholar 

  21. Reyes Sierra, M., Coello Coello, C.A.: A Study of Fitness Inheritance and Approximation Techniques for Multi-Objective Particle Swarm Optimization. In: Proceedings of the 2005 Congress on Evolutionary Computation (CEC 2005), pp. 65–72 (2005)

    Google Scholar 

  22. Ducheyne, E., De Baets, B., De Wulf, R.: Is fitness inheritance useful for real-world applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 31–42. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Sano, Y., Kita, H.: Optimization of noisy fitness functions by means of genetic algorithms using history. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 571–580. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Branke, J., Schmidt, C., Schmeck, H.: Efficient fitness estimation in noisy environment. In: Spector, L. (ed.) Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 243–250. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  25. Branke, J., Schmidt, C.: Fast convergence by means of fitness estimation. Soft Computing Journal 9(1), 13–20 (2005)

    Article  Google Scholar 

  26. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. American Institute of Aeronautics and Astronautics Journal 41(4), 687–696 (2003)

    Google Scholar 

  27. Ong, Y.S., Zhu, Z., Lim, D.: Curse and blessing of uncertainty in evolutionary algorithm using approximation. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 2928–2935 (2006)

    Google Scholar 

  28. Regis, R.G., Shoemaker, C.A.: Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Transactions on Evolutionary Computation 8(5), 490–505 (2004)

    Article  Google Scholar 

  29. Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B.: Trusted evolutionary algorithm. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 149–156 (2006)

    Google Scholar 

  30. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments (with discussion). Statistical Science 4, 409–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. V, pp. 87–96. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  32. Hong, Y.-S., Lee, H., Tahk, M.-J.: Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks. Engineering Optimization 35(1), 91–102 (2003)

    Article  MathSciNet  Google Scholar 

  33. Won, K.S., Ray, T., Tai, K.: A framework for optimization using approximate functions. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1077–1084 (2003)

    Google Scholar 

  34. Khorsand, A.-R., Akbarzadeh, M.: Multi-objective meta level soft computing-based evolutionary structural design. Journal of the Franklin Institute, 595–612 (2007)

    Google Scholar 

  35. Jin, Y., Olhofer, M., Sendhoff, B.: On evolutionary optimization with approximate fitness functions. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 786–792. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  36. Shi, L., Rasheed, K.: A survey of fitness approximation methods applied in evolutionary algorithms. In: Hiot, L.M., Ong, Y.S., Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization, vol. 2, pp. 3–28. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  37. Kim, H.-S., Cho, S.-B.: An efficient genetic algorithms with less fitness evaluation by clustering. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 887–894. IEEE, Los Alamitos (2001)

    Google Scholar 

  38. Bhattacharya, M., Lu, G.: A dynamic approximate fitness based hybrid ea for optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1879–1886 (2003)

    Google Scholar 

  39. Fonseca, L.G., Barbosa, H.J.C.: A similarity-based surrogate model for enhanced performance in genetic algorithms. Opsearch 46, 89–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  41. Mezura-Montes, E. (ed.): Constraint-Handling in Evolutionary Optimization. Springer, Berlin (2009); ISBN 978-3-642-00618-0

    Google Scholar 

  42. Runarsson, T.P.: Constrained evolutionary optimization by approximate ranking and surrogate models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 401–410. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  43. Coello Coello, C.A.: Theoretical and Numerical Constraint Handling Techniques used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Runarsson, T.P., Yao, X.: Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)

    Article  Google Scholar 

  45. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint Handling in Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 13(3), 514–525 (2009)

    Article  Google Scholar 

  46. Kumar Singh, H., Ray, T., Smith, W.: C-PSA: Constrained Pareto simulated annealing for constrained multi-objective optimization. Information Sciences 180(13), 2499–2513 (2010)

    Article  Google Scholar 

  47. Santana-Quintero, L.V., Arias Montaño, A., Coello Coello, C.A.: A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems, pp. 29–59. Springer, Berlin (2010)

    Chapter  Google Scholar 

  48. Davarynejad, M.: Fuzzy Fitness Granulation in Evolutionary Algorithms for Complex Optimization. Master’s thesis, Ferdowsi University of Mashhad (June 2007)

    Google Scholar 

  49. Zadeh, L.A.: Fuzzy sets and information granularity. Advances in Fuzzy Set Theory and Applications, 3–18 (1979)

    Google Scholar 

  50. Davarynejad, M., Ahn, C.W., Vrancken, J.L.M., van den Berg, J., Coello Coello, C.A.: Evolutionary hidden information detection by granulation-based fitness approximation. Applied Soft Computing 10(3), 719–729 (2010)

    Article  Google Scholar 

  51. Akbarzadeh-T, M.R., Davarynejad, M., Pariz, N.: Adaptive fuzzy fitness granulation for evolutionary optimization. International Journal of Approximate Reasoning 49(3), 523–538 (2008)

    Article  Google Scholar 

  52. Davarynejad, M., Akbarzadeh-T, M.-R., Pariz, N.: A novel general framework for evolutionary optimization: Adaptive fuzzy fitness granulation. In: Proceedings of the 2007 Congress on Evolutionary Computation (CEC 2007), pp. 951–956 (2007)

    Google Scholar 

  53. Davarynejad, M., Akbarzadeh-T, M.R., Coello Coello, C.A.: Auto-tuning fuzzy granulation for evolutionary optimization. In: Proceedings of the 2008 Congress on Evolutionary Computation, pp. 3572–3579 (2008)

    Google Scholar 

  54. Ansys, I.: ANSYS users manual. ANSYS Inc., Southpointe, 275 (2004)

    Google Scholar 

  55. Freudenberger, J., Gllner, J., Heilmaier, M., Mook, G., Saage, H., Srivastava, V., Wendt, U.: Materials science and engineering. In: Grote, K.H., Antonsson, E.K. (eds.) Springer Handbook of Mechanical Engineering. Springer, Heidelberg (2009)

    Google Scholar 

  56. Lin, J., Nien, M.: Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors. Composite Structures Journal 70, 170–176 (2005)

    Article  Google Scholar 

  57. Li, J., Sedaghati, R., Dargahi, J., Waechter, D.: Design and development of a new piezoelectric linear Inchworm actuator. Mechatronics Journal 15, 651–681 (2005)

    Article  Google Scholar 

  58. Adali, S., Sadek, I., Bruch Jr., J., Sloss, J.: Optimization of composite plates with piezoelectric stiffener-actuators under in-plane compressive loads. Composite Structures Journal 71, 293–301 (2005)

    Article  Google Scholar 

  59. Krommer, M.: Dynamic shape control of sub-sections of moderately thick beams. Computers & Structures 83(15-16), 1330–1339 (2005)

    Article  Google Scholar 

  60. Weise, T.: Global Optimization Algorithms–Theory and Application. Abrufdatum, 1 (2008), http://www.it-weise.de

  61. Nguyen, Q., Tong, L.: Shape control of smart composite plate with non-rectangular piezoelectric actuators. Composite Structures 66(1-4), 207–214 (2004)

    Article  Google Scholar 

  62. Aryana, F., Bahai, H., Mirzaeifar, R., Yeilaghi, A.: Modification of dynamic characteristics of FGM plates with integrated piezoelectric layers using first-and second-order approximations. International Journal for Numerical Methods in Engineering 70(12), 1409–1429 (2007)

    Article  MATH  Google Scholar 

  63. Khorsand, A.-R., Akbarzadeh-T, M.-R., Moin, H.: Genetic Quantum Algorithm for Voltage and Pattern Design of Piezoelectric Actuator. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 2593–2600 (2006)

    Google Scholar 

  64. Piefort, V.: Finite element modelling of piezoelectric active structures. PhD thesis, Université Libre de Bruxelles (2001)

    Google Scholar 

  65. da Mota Silva, S., Ribeiro, R., Rodrigues, J.D., Vaz, M.A.P., Monteiro, J.M.: The application of genetic algorithms for shape control with piezoelectric patches-an experimental comparison. Smart Materials and Structures 13, 220–226 (2004)

    Article  Google Scholar 

  66. Kelly, D.W., De, J.P., Gago, S.R., Zienkiewicz, O.C., Babuska, I.: A posteriori error analysis and adaptive processes in the finite element method: Part i–error analysis. International Journal for Numerical Methods in Engineering 19, 1593–1619 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davarynejad, M., Vrancken, J., van den Berg, J., Coello Coello, C.A. (2012). A Fitness Granulation Approach for Large-Scale Structural Design Optimization. In: Chiong, R., Weise, T., Michalewicz, Z. (eds) Variants of Evolutionary Algorithms for Real-World Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23424-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23424-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23423-1

  • Online ISBN: 978-3-642-23424-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics