Skip to main content

Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility under Budget Constraints

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

We consider the maximization of a gross substitutes utility function under budget constraints. This problem naturally arises in applications such as exchange economies in mathematical economics and combinatorial auctions in (algorithmic) game theory. We show that this problem admits a polynomial-time approximation scheme (PTAS). More generally, we present a PTAS for maximizing a discrete concave function called an M\(^\natural\)-concave function under budget constraints. Our PTAS is based on rounding an optimal solution of a continuous relaxation problem, which is shown to be solvable in polynomial time by the ellipsoid method. We also consider the maximization of the sum of two M\(^\natural\)-concave functions under a single budget constraint. This problem is a generalization of the budgeted max-weight matroid intersection problem to the one with a nonlinear objective function. We show that this problem also admits a PTAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel, L.M., Milgrom, P.: Ascending auctions with package bidding. Front. Theor. Econ. 1, Article 1 (2002)

    Google Scholar 

  2. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted matroid intersection via the gasoline puzzle. Math. Programming (2009) (to appear)

    Google Scholar 

  3. Bing, M., Lehmann, D., Milgrom, P.: Presentation and structure of substitutes valuations. In: Proc. EC 2004, pp. 238–239 (2004)

    Google Scholar 

  4. Blumrosen, L., Nisan, N.: Combinatorial auction. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 267–299. Cambridge Univ. Press, Cambridge (2007)

    Chapter  Google Scholar 

  5. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint. SIAM J. Comput. (to appear)

    Google Scholar 

  7. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  8. Cunningham, W.H.: On submodular function minimization. Combinatorica 5, 185–192 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J. Comput. 39, 122–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proc. FOCS 2007, pp. 461–471 (2007)

    Google Scholar 

  13. Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Programming 42, 489–563 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  15. Fujishige, S., Yang, Z.: A note on Kelso and Crawford’s gross substitutes condition. Math. Oper. Res. 28, 463–469 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grandoni, F., Zenklusen, R.: Approximation schemes for multi-budgeted independence systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 536–548. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  18. Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theory 87, 95–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kelso, A.S., Crawford, V.P.: Job matching, coalition formation and gross substitutes. Econometrica 50, 1483–1504 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proc. SODA 2009, pp. 545–554 (2009)

    Google Scholar 

  21. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23, 2053–2078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econom. Behav. 55, 270–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4, 414–424 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murota, K.: Valuated matroid intersection, I: optimality criteria, II: algorithms. SIAM J. Discrete Math. 9, 545–561, 562–576 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murota, K.: Discrete convex analysis. Math. Programming 83, 313–371 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)

    Google Scholar 

  29. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W.J., Lovász, J., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murota, K., Shioura, A.: Extension of M-convexity and L-convexity to polyhedral convex functions. Adv. in Appl. Math. 25, 352–427 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Murota, K., Tamura, A.: Application of M-convex submodular flow problem to mathematical economics. Japan J. Indust. Appl. Math. 20, 257–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Murota, K., Tamura, A.: New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discrete Appl. Math. 131, 495–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  36. Shioura, A.: Minimization of an M-convex function. Discrete Appl. Math. 84, 215–220 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shioura, A.: On the pipage rounding algorithm for submodular function maximization: a view from discrete convex analysis. Discrete Math. Algorithms Appl. 1, 1–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wolsey, L.A.: Maximising real-valued submodular functions: primal and dual heuristics for location problems. Math. Oper. Res. 7, 410–425 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shioura, A. (2011). Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility under Budget Constraints. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics