Skip to main content

Obtaining the Full Counting Statistics of Correlated Nanostructures from Time Dependent Simulations

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

Transport properties of strongly interacting quantum systems are a major challenge in todays condensed matter theory. In our project we apply the density matrix renormalization group method to study transport properties of quantum devices attached to metallic leads.

To this end we have developed two complementary approaches to obtain conductance of a structure coupled to left and right leads. First we use the Kubo approach to obtain linear conductance. Combined with leads described in momentum space we have obtained high resolution in energy. The second approach is based on simulating the time evolution of an initial state with a charge imbalance. In cooperation with Edouard Boulat and Hubert Saleur we have been able to show that our approach is in excellent agreement with analytical calculations in the framework of the Bethe ansatz. This agreement is remarkable as the numerics is carried out in a lattice model, while the analytical result is based on field theoretical methods in the continuum. Therefore we have to introduce a scale T B to compare the field theoretical result to our numerics. Remarkably, at the so called self-dual point the complete regularization can be expressed by a single number, even for arbitrary contact hybridization t′. Most strikingly we proved the existence of a negative differential conductance regime even in this simplistic model of a single resonant level with interaction on the contact link.

In an extension of this approach we presented results for current-current correlations, including shot noise, based on our real time simulations in our last report. In this report we extend this scheme in order to access the cumulant generating function of the electronic transport within the interacting resonant level model at its self-dual point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. White. Phys. Rev. Lett., 69:2863, 1992.

    Article  Google Scholar 

  2. S. R. White. Phys. Rev. B, 48:10345, 1993.

    Article  Google Scholar 

  3. I. Peschel, X. Wang, M. Kaulke, and K. Hallberg, editors. Density Matrix Renormalization, 1999.

    MATH  Google Scholar 

  4. R. M. Noack and S. R. Manmana. Diagonalization- and numerical renormalization-group-based methods for interacting quantum systems. In A. Avella and F. Mancini, editors, Lectures on the Physics of Highly Correlated Electron Systems IX: Ninth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors, volume 789, pages 93–163, Salerno, Italy. AIP, Melville, NY, USA, 2005.

    Google Scholar 

  5. K. A. Hallberg. New trends in density matrix renormalization. Adv. Phys., 55(5):477–526, 2006.

    Article  Google Scholar 

  6. U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77(1), 2005.

    Google Scholar 

  7. P. Schmitteckert. Nonequilibrium electron transport using the density matrix renormalization group. Phys. Rev. B, 70:121302(R), 2004.

    Article  Google Scholar 

  8. P. Schmitteckert and G. Schneider. Signal transport and finite bias conductance in and through correlated nanostructures. In W. E. Nagel, W. Jäger, and M. Resch, editors, High Performance Computing in Science and Engineering ’06, pages 113–126. Springer, Berlin, 2006.

    Google Scholar 

  9. P. Schmitteckert. Signal transport in and conductance of correlated nanostructures. In W. E. Nagel, D. B. Kröner, and M. Resch, editors, High Performance Computing in Science and Engineering ’07, pages 99–106. Springer, Berlin, 2007.

    Google Scholar 

  10. T. Ulbricht and P. Schmitteckert. Signal transport in and conductance of correlated nanostructures. In W. E. Nagel, D. B. Kröner, and M. Resch, editors, High Performance Computing in Science and Engineering ’08, pages 71–82. Springer, Berlin, 2008.

    Google Scholar 

  11. A. Branschädel, T. Ulbricht, and P. Schmitteckert. Conductance of correlated nanostructures. In W. E. Nagel, D. B. Kröner, and M. Resch, editors, High Performance Computing in Science and Engineering ’09, pages 123–137. Springer, Berlin, 2009.

    Google Scholar 

  12. E. Boulat, H. Saleur, and P. Schmitteckert. Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures. Phys. Rev. Lett., 101(14):140601, 2008.

    Article  MathSciNet  Google Scholar 

  13. A. Branschädel, E. Boulat, H. Saleur, and P. Schmitteckert. Shot noise in the self-dual interacting resonant level model. Phys. Rev. Lett., 105(14):146805, Oct 2010.

    Article  Google Scholar 

  14. A. Branschädel, E. Boulat, H. Saleur, and P. Schmitteckert. Numerical evaluation of shot noise using real-time simulations. Phys. Rev. B, 82(20):205414, Nov 2010.

    Article  Google Scholar 

  15. D. Bohr, P. Schmitteckert, and P. Wölfle. DMRG evaluation of the kubo formula—conductance of strongly interacting quantum systems. Europhys. Lett., 73:246, 2006.

    Article  Google Scholar 

  16. D. Bohr and P. Schmitteckert. Strong enhancement of transport by interaction on contact links. Phys. Rev. B, 75(24):241103(R), 2007.

    Article  Google Scholar 

  17. P. Schmitteckert. Calculating green functions from finite systems. J. Phys.: Conf. Ser., 220:012022, 2010.

    Article  Google Scholar 

  18. T. Ulbricht and P. Schmitteckert. Is spin-charge separation observable in a transport experiment? EPL, 86(5):57006+, 2009.

    Article  Google Scholar 

  19. T. Ulbricht and P. Schmitteckert. Tracking spin and charge with spectroscopy in spin-polarised 1d systems. EPL, 89:47001, 2010.

    Article  Google Scholar 

  20. T. Ulbricht, R. A. Molina, R. Thomale, and P. Schmitteckert. Color-charge separation in trapped su(3) fermionic atoms. Phys. Rev. A, 82(1):011603, July 2010.

    Article  Google Scholar 

  21. A. Branschädel, G. Schneider, and P. Schmitteckert. Conductance of inhomogeneous systems: Real-time dynamics. Ann. Phys. (Berlin), 522:657, 2010.

    Google Scholar 

  22. A. Branschädel and P. Schmitteckert. Conductance of correlated nanostructures. In High Performance Computing in Science and Engineering ’10. Springer, Berlin, 2010.

    Google Scholar 

  23. D. Bagrets, S. Carr, and P. Schmitteckert. Full counting statistics in the self-dual interacting resonant level model. arXiv:1104.3532.

  24. R. de Picciotto, M. Heiblum, H. Shtrikman, and D. Mahalu. Phys. Rev. Lett., 75:3340, 1995.

    Article  Google Scholar 

  25. A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne. Phys. Rev. Lett., 76:2778, 1996.

    Article  Google Scholar 

  26. M. Esposito, U. Harbola, and S. Mukamel. Rev. Mod. Phys., 81:1665, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  27. I. Klich and L. Levitov. Phys. Rev. Lett., 102:100502, 2009.

    Article  Google Scholar 

  28. B. Reulet, J. Senzier, and D. E. Prober. Phys. Rev. Lett., 91:196601, 2003.

    Article  Google Scholar 

  29. Y. Bomze, G. Gershon, D. Shovkun, L. S. Levitov, and M. Reznikov. Phys. Rev. Lett., 95:176601, 2005.

    Article  Google Scholar 

  30. D. Djukic and J. M. van Ruitenbeek. Shot noise measurements on a single molecule. Nano Letters, 6(4):789, 2006.

    Article  Google Scholar 

  31. S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, and K. Ensslin. Phys. Rev. Lett., 96:076605, 2006.

    Article  Google Scholar 

  32. S. Carr, D. Bagrets, and P. Schmitteckert. Full counting statistics in the self-dual interacting resonant level model. Phys. Rev. Lett., 2011.

    Google Scholar 

  33. D. S. Golubev, D. A. Bagrets, Y. Utsumi, and G. Schön. Fortschr. Phys., 54:917, 2006.

    Article  MATH  Google Scholar 

  34. H. Lee, L. S. Levitov, and G. B. Lesovik. J. Math. Phys., 37:4845, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  35. K. Schönhammer. Full counting statistics for noninteracting fermions: Exact results and the Levitov-Lesovik formula. Phys. Rev. B, 75(20):205329, May 2007.

    Article  Google Scholar 

  36. A. W. W. Ludwig, A. O. Gogolin, R. M. Komnik, and H. Saleur. Ann. Phys. (Leipzig), 16:678, 2007.

    Article  MATH  Google Scholar 

  37. H. Saleur and U. Weiss. Point-contact tunneling in the fractional quantum hall effect: An exact determination of the statistical fluctuations. Phys. Rev. B, 63(20):201302, Apr 2001.

    Article  Google Scholar 

  38. A. Komnik, B. Trauzettel, and U. Weiss. Ann. Phys. (Leipzig), 16:661, 2007.

    Article  MATH  Google Scholar 

  39. P. Fendley, A. W. W. Ludwig, and H. Saleur. Exact nonequilibrium transport through point contacts in quantum wires and fractional quantum hall devices. Phys. Rev. B, 52(12):8934–8950, Sep 1995.

    Article  Google Scholar 

  40. L. S. Levitov and M. Reznikov. Counting statistics of tunneling current. Phys. Rev. B, 70(11):115305, Sep 2004.

    Article  Google Scholar 

  41. T. Ulbricht, R. A. Molina, R. Thomale, and P. Schmitteckert. Color-charge separation in trapped su(3) fermionic atoms. Phys. Rev. A, 82(1):011603, July 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmitteckert, P. (2012). Obtaining the Full Counting Statistics of Correlated Nanostructures from Time Dependent Simulations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_12

Download citation

Publish with us

Policies and ethics