Skip to main content

The Influence of Partial Melt on Mantle Convection

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

The thermo-chemical evolution of a one-plate planet like Mars strongly influences its atmospheric evolution via volcanic outgassing, which is linked to the production of partial melt in the mantle. In earlier thermal evolution and convection models melt production has been considered by the release and consumption of latent heat, the formation of crust and the redistribution of radioactive heat sources. We present thermo-chemical 2D convection models that examine the influence of partial melt on the mantle dynamics of a one-plate planet such as Mars. Assuming fractional melting, where melt leaves the system as soon as it is formed, cooling boundary conditions and decaying radioactive elements, we investigate the effects of partial melt on the melting temperature, mantle density and viscosity. In the present study, we examine the influence of these effects on the mantle dynamics of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breuer, D.; Spohn, T.: Early plate tectonics versus single plate tectonics: Evidence from the magnetic field history and crust evolution. J. Geophys. Res. – Planets, 108, 5072, (2003), doi:10.1029/20002JE001999.

    Article  Google Scholar 

  2. Breuer, D.; Moore, W.B.: Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. In: Treatise on Geophysics (Editor-in-Chief G. Schubert), 10, Planets and Moons (Ed. T. Spohn), p. 299–348, Elsevier, Amsterdam, (2007).

    Chapter  Google Scholar 

  3. Breuer, D.: Dynamics and thermal evolution. In: Landolt-Börnstein Astronomy and Astrophysics (Group VI), 4, Astronomy, Astrophysics, and Cosmology (B – Solar System), p. 254–270, Springer, Berlin, (2009), ISBN 978 3 540 88054 7.

    Google Scholar 

  4. Caretto, L.S.; Gosman, A.D.; Patankar, S.V.; Spalding, D.B.: Two calculation procedures for steady, three-dimensional flows with recirculation. Proc. Third Int. Conf. Numer. Methods Fluid Dyn., Paris, (1972).

    Google Scholar 

  5. Christensen, U.: Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophysical Journal-Royal Astronomical Society, 77, 343–384, (1984).

    Google Scholar 

  6. De Smet, J.H.; Van Den Berg, A.P.; Vlaar, N.J.: The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting. Lithos, 48, 153–170, (1999).

    Article  Google Scholar 

  7. Fraeman, A.; Korenaga, Y.: The influence of mantle melting on the evolution of Mars. Icarus, 210, 43–57, (2010), doi:10.1016/j.icarus.2010.06.030.

    Article  Google Scholar 

  8. Grasset, O.; Parmentier, E.M.: Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution. J. Geophys. Res., 103, 18171–18181, (1998).

    Article  Google Scholar 

  9. Harder, H.; Hansen, U.: A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophysical Journal International, 161, 522–532, (1986).

    Article  Google Scholar 

  10. Hauck, S.A.; Phillips, R.J.: Thermal and crustal evolution of mars. J. Geophys. Res., 2002, 107, E7, doi:10.1029/2001JE001801, (2007).

  11. Hirth, G.; Kohlstedt, D.L.: Water in the oceanic upper mantle: Implication for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108, (1996).

    Article  Google Scholar 

  12. Huettig, C.; Stemmer, K.: Finite volume discretization for dynamic viscosities on Voronoi grids. Phys. Earth Planet. Interiors (2008), doi:10.1016/j.pepi.2008.07.007.

    Google Scholar 

  13. Huettig, C.; Stemmer, K.: The spiral grid: A new approach to discretize the sphere and its application to mantle convection. Geochem. Geophys. Geosyst., 9, Q02018, (2008), doi:10.1029/2007GC001581.

    Article  Google Scholar 

  14. Huettig, C.: Scaling Laws for Internally Heated Mantle Convection, Ph. D. Thesis, (2009).

    Google Scholar 

  15. Karato, S.; Paterson, M.S.; Fitz Gerald, J.D.: Rheology of synthetic olivine aggregates: Influence of grain size and water. J. Geophys. Res., 91, 8151–8176, (1986).

    Article  Google Scholar 

  16. Karato, S.; Wu, P.: Rheology of the upper mantle: A synthesis. Science, 260, 5109, 771–778, (1993).

    Article  Google Scholar 

  17. Katz, R.F.; Spiegelman, M.; Langmuir, C.H.: A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4 (9), 1073, (2003).

    Article  Google Scholar 

  18. Korenaga, J.: Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting. Geophys. J. Int., 179, 154–170, (2009), doi:10.1111/j.1365-246X.2009.04272.x.

    Article  Google Scholar 

  19. Maaløe, S.: The solidus of harzburgite to 3 GPa pressure: The compositions of primary abyssal tholeiite. Mineralogy and Petrology, 81 (12), 117 (2004).

    Google Scholar 

  20. Morschhauser, A.; Grott, M.; Breuer, D.: Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus, 212 (2), 541–558, doi:10.1016/j.icarus.2010.12.028. (2011).

    Article  Google Scholar 

  21. Neumann, G.A.; Zuber, M.T.; Wieczorek, M.A.; McGovern, P.J.; Lemoine, F.G.; Smith, D.E.: Crustal structure of Mars from gravity and topography. J. Geophys. Res., 109, E08002, (2004).

    Article  Google Scholar 

  22. Ohtani, E.; Nagatab, Y.; Suzuki, A.; Katoa, T.: Melting relations of peridotite and the density crossover in planetary mantles. Chemical Geology, 120, 207–221 (1995).

    Article  Google Scholar 

  23. Papike, J.J.; Karner, J.M.; Shearer, C.K.; Burger, P.V.: Silicate mineralogy of martian meteorites. Geochimica et Cosmochimica Acta, 73, 7443–7485, (2009), doi:10.1016/j.gca.2009.09.008.

    Article  Google Scholar 

  24. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, (1980).

    MATH  Google Scholar 

  25. Plesa, A.-C.; Huettig, C.: Numerical Simulation of Planetary Interiors: Mantle Convection in a 2D Spherical Shell (Abstract). Workshop on Geodynamics 2008, Herz-Jesu-Kloster, Neustadt, Waldstr. 145 67434, Neustadt/Weinstrasse, (2008).

    Google Scholar 

  26. Plesa, A.-C.; Breuer, D.: Viscosity Variations Due to the Influence of Partial Melt: Implications for the Thermal Evolution of Mars and Earth (Abstract No. P1.05). International Conference on Comparative Planetology: Venus – Earth – Mars, Noordwijk, Holland, (2009).

    Google Scholar 

  27. Plesa, A.-C.; Breuer, D.: Effects of Viscosity Modifications and Solidus Changes in Regions of Partial Melt on Mantle Dynamics (Abstract No. EPSC2009-366). 4th European Planetary Science Congress (EPSC), Potsdam, Germany, (2009).

    Google Scholar 

  28. Plesa, A.-C.; Breuer, D.: The Influence of Partial Melt Generation on Mantle Density and Viscosity: Consequence for the Mantle Dynamics (Abstract). Geodynamics Workshop 2010, Muenster, Deutschland. (2010).

    Google Scholar 

  29. Roberts, J.H.; Zhong, S.: Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. Journal of Geophysical Research E: Planets, 111, (2006).

    Google Scholar 

  30. Schubert, G.; Turcotte, D.L.; Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, (2001).

    Book  Google Scholar 

  31. Schumacher, S.; Breuer, D.: Influence of a variable thermal conductivity on the thermochemical evolution of mars. J. Geophys. Res., 111 (E2), E02006, (2006).

    Article  Google Scholar 

  32. Takahashi, E.: Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite. J. Geophys. Res., 95 B10, 15941–15954, (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Catalina Plesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plesa, AC., Spohn, T. (2012). The Influence of Partial Melt on Mantle Convection. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_40

Download citation

Publish with us

Policies and ethics