Skip to main content

Multi-objective Path Planning for Space Exploration Robot Based on Chaos Immune Particle Swarm Optimization Algorithm

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7003))

Abstract

Multi-objective path planning for mobile robot in complex environments is a challenging issue in space exploration. In order to improve the efficiency and quality of the multi-objective path planning, a chaos immune particle swarm optimization (CIPSO) algorithm is proposed in this paper, which combines chaos and PSO with immune network theory so as to enhance the searching speed of path planning for mobile robot and insure the safety of space exploration. Simulation results show that the CIPSO has well performance for path planning and obstacle avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gao, Y.: Multi-robot Cooperation Based on Biological Immune System. Zhejiang University (2007)

    Google Scholar 

  2. Regele, R., Levi, P.: Cooperative Multi-Robot Path Planning by Heuristic Priority Adjustment. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5954–5959. IEEE Press, Beijing (2006)

    Google Scholar 

  3. Chen, J., Li, L.R.: Path Planning Protocol for Collaborative Multi-robot Systems. In: Proceedings IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 721–726. IEEE Press, Espoo (2005)

    Google Scholar 

  4. Guo, S., Dai, L., Ouyang, Y.: The Research and Simulation on the path planning based on the Improved Grid Model. In: IEEE International Conference on Artificial Intelligence and Computational Intelligence, pp. 318–321. IEEE Press, Shanghai (2009)

    Google Scholar 

  5. Willms, A.R., Yang, S.X.: An efficient dynamic system for real-time robot-path planning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(4), 755–766 (2009)

    Article  Google Scholar 

  6. Arambula Cosío, F., Padilla Castañeda, M.A.: Autonomous robot navigation using adaptive potential fields. Mathematical and Computer Modelling 40(9), 1141–1156 (2004)

    Article  MATH  Google Scholar 

  7. Hong, Q., Yang, S.X., Willms, A.R., Zhang, Y.: Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model. IEEE Transactions on Neural Networks 20(11), 1724–1739 (2009)

    Article  Google Scholar 

  8. Tewolde, G.S., Sheng, W.: Robot Path Integration in Manufacturing Processes: Genetic Algorithm Versus Ant Colony Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 38(2), 278–287 (2008)

    Article  Google Scholar 

  9. Masehian, E., Sedighizadeh, D.: A multi-objective PSO-based algorithm for robot path planning. In: IEEE International Conference on Industrial Technology, pp. 465–470. IEEE Press, Tehran (2010)

    Google Scholar 

  10. Ren, W., Wang, Q., Wei, L., Zhang, L.: A Kind of Adaptive Immune Genetic Algorithm Based on Chaos and Its Application. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, pp. 5018–5021. IEEE Press, Jinan (2010)

    Google Scholar 

  11. Zhao, Q.: Improved chaos optimization algorithm and its application. Automation and Instrumentation (3), 90–92 (2006)

    Google Scholar 

  12. Jerne, N.K.: Towards a network theorem of the immune system. Annual Immunology 125C, 373–389 (1974)

    Google Scholar 

  13. Timmis, J., Neal, M.: A resource limited artificial immune system for data analysis. Knowledge Based Systems 14(3), 121–130 (2001)

    Article  Google Scholar 

  14. de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 674–699. IEEE Press, Canterbury (2002)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Washington, DC (1995)

    Chapter  Google Scholar 

  16. Sadeghpour, M., Salarieh, H., Vossoughi, G., Alasty, A.: Multi-variable control of chaos using PSO-based minimum entropy control. Commun. Nonlinear Sci. Numer. Simulat. 16, 2397–2404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hao, W., Qin, S. (2011). Multi-objective Path Planning for Space Exploration Robot Based on Chaos Immune Particle Swarm Optimization Algorithm. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23887-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23886-4

  • Online ISBN: 978-3-642-23887-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics