Skip to main content

The Quantum Geometry of Polyhedral Surfaces

  • Chapter
  • First Online:
Quantum Triangulations

Part of the book series: Lecture Notes in Physics ((LNP,volume 845))

  • 1726 Accesses

Abstract

Among the many significant ideas and developments that connect Mathematics with contemporary Physics one of the most intriguing is the role that Quantum Field Theory (QFT) plays in Geometry and Topology. We can argue back and forth on the relevance of such a role, but the perspective QFT offers is often surprising and far reaching. Examples abound, and a fine selection is provided by the revealing insights offered by Yang–Mills theory into the topology of 4-manifolds, by the relation between Knot Theory and topological QFT, and most recently by the interaction between Strings, Riemann moduli space, and enumerative geometry. Doubtless many of the most striking connections suggested by physicists failed to pass the censorship of the Department of Mathematics, and so do not appear in the above official list. As ill-defined these techniques may be, if we give them some degree of mathematical acceptance then the geometrical perspective they afford is always quite non-trivial and extremely rich. It is within such a framework that we shall examine in this and following chapters some aspects of the relation between an important class of QFTs and polyhedral surfaces. We start with a rather general introduction on geometrical aspects of QFT that will allow us to introduce naturally a notion of Quantum Geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of tachyon is slightly misleading in non-critical string theory, where low dimensions are sampled and the usual instability associated with tachyons in critical strings is not present. For details see vol. I, Chap. 9 of [61].

  2. 2.

    For the elementary notion of string theory we shall exploit we refer freely to the excellent presentation in [41, 43] and [61].

  3. 3.

    There are clearly too many g’s around, however no confusion should arise since it will be always clear from the context when we are dealing with the genus g of the surface M or with the running metric g of the target manifold \(V^n.\)

  4. 4.

    According to Riemann–Roch theorem \(\dim Ker P_1-\dim Ker P_1^\dagger =6-6g.\) Since \(\dim\;{Ker}\; P_1=6\) for the sphere, \(=2\) for the torus, \(=0\) for surfaces with \(g\geq2,\)it follows that in the case of surfaces \(\dim Ker P_1^\dagger\) is finite-dimensional, and is given by \(=0,2, 6g-6\) when \(g=0,1, {\geq}2,\)respectively.

  5. 5.

    We are restricting for simplicity to the case of surface genus \(g\geq 2.\) In the case \(g=0,1,\) (4.27) acquires finite-dimensional determinants related to the presence of conformal Killing vectors. A careful analysis of the whole subject is presented in [16, 17].

  6. 6.

    \(S_{L}(\hat{\gamma},u)\) is actually the difference of the Liouville actions \(S_L(\varphi )\) and \(S_L(\varphi+u )\) respectively associated with the conformal metrics \(\hat{\gamma}=e^{\varphi }|dz|^2\) and \(\gamma=e^{\varphi +u}|dz|^2.\) The explicit characterization of \(S_L(\varphi )\) is very delicate since \(e^{\varphi }\) is not a function but the \((1,1)\) component of the metric tensor. A thorough analysis of the subject, with the relevant references, is discussed in [69].

  7. 7.

    For notational ease, we have chosen units for the fields \(\phi^k\) such that \({{1}\over {4\pi l_s^2}}=1.\)

  8. 8.

    However, (4.35) is invariant under the combined action of the above translation and of the conformal rescaling \(\hat{\gamma}\mapsto \hat{\gamma} e^{2 w(x)}.\)

  9. 9.

    A fully rigorous derivation of (4.40) is still an open mathematical problem.

  10. 10.

    This shows that \(S^{(ren)}_{L}({\gamma},u)\) characterizes a conformal field theory with central charge \(c_u = 1+ 6 Q^2,\)[41, 43, 57].

  11. 11.

    We remind the reader that formally the classical limit corresponds to \(n\searrow -\infty ,\) see the comments to the expression of the partition function (4.34).

  12. 12.

    When \(\phi^{n\,+\,1}\nearrow \infty\) and \(U(\phi)\) is real, \((n\leq 1),\)the term \({\hbox{exp}}\;U(\phi)\) dominates the action \({{\fancyscript{S}}}_{\hat{\gamma}}[\phi; f(\phi), U(\phi)]\) which then becomes large and positive, suppressing, in the path integral over \(Map(M, V^{n\,+\,1}),\) the configurations for which \(\phi^{n\,+\,1}\nearrow \infty.\)

  13. 13.

    The extra dimension is actually time-like if \(n>26.\)

  14. 14.

    The effective action (4.78) is written in the so called string frame. By a conformal transformation it is possible to move to the Einstein frame where (4.78) takes a manifest Einstein–Hilbert structure; see e.g., [43, 57] for details. The picture becomes more complex with the presence of the tachyonic coupling \(U(\phi),\)and in general the implementation of conformal invariance just at leading order is not believed to be sufficient for a reliable effective field theory description.

  15. 15.

    This remark on diffusive motion is nicely stressed and discussed by Faris in [28].

  16. 16.

    One can well argue that such a sampling process characterizes \(V^{n\,+\,1}\) in a neighborhood of the given point.

  17. 17.

    Our definition of \(\Gamma_{\it KPZ}\) is concocted in such a way to explicitly keep track of the genus g. Another standard definition of the string susceptibility exponent \(\Gamma_{\it string}\) is via the asymptotic scaling \(Z_{g}[A] \sim A^{(\Gamma_{\it string}-2) (1-g)-1}.\) The two critical exponents are related by \(\Gamma_{\it string}=(\Gamma_{\it KPZ}-2g)/(1-g).\)

  18. 18.

    A mathematically rigorous formulation of Quantum Liouville theory which takes into care the subtleties of the definition of the Liouville action is discussed in [69].

  19. 19.

    As compared with the Matrix theory describing flat 11-dimensional M-theory in the discrete light-cone quantization—see [43] for a review and relevant references.

  20. 20.

    An excellent review is provided by [19].

  21. 21.

    The light-cone cellular decomposition of the N-pointed Teichmüller space arises from the structure theory of abelian differential of the third kind. As in the case of quadratic differentials associated to ribbon graphs, also here we get a graph structure yielding for a cellular decomposition which descends to Riemann moduli space and exhibits certain computational advantages with respect to the ribbon graph cellularization [56].

  22. 22.

    For a nice and clear presentation see [41].

  23. 23.

    The situation is apparently similar to what happens in standard two-dimensional Regge calculus. There, however, a poor understanding of the correct measure to use over (a badly selected part of) \({\it POL}_{g,N_0}(A)\) has hampered the use of Regge calculus for regularizing 2D quantum gravity.

  24. 24.

    Here we deal with generalized triangulations, barycentrically dual to trivalent graphs; in the case of regular triangulations in place of \(108\sqrt{3}\) we would get \(e^{ v _{0}}=({{4^{4}}\over {3^{3}}}).\) Also note that the parameter \(c_g\) does not play any relevant role in 2D quantum gravity.

  25. 25.

    In this respect, the situation is here quite simpler than that described in the delicate and prescient analysis of the measure issue in Regge calculus addressed in a series of paper by Menotti and Peirano, (see [49] and references therein).

  26. 26.

    With respect to the statement of this result in Appendix B we have slightly specialized the notation.

  27. 27.

    The ordering is important for characterizing the diffeomorphism group relevant to the problem: \({\fancyscript{D}}iff(M,N_0)\) if we are injecting \((T_{(1)}, M)\) into \((T_{(2)}, M)\) so as to consider the neighborhoods of the vertices \(\{q_h\}\in (T_{(2)}, M)\) as (conformally) smooth as seen by \((T_{(1)}, M),\) whereas \({\fancyscript{D}}iff(M,\hat{N}_0)\) is the appropriate group when we inject \((T_{(2)}, M)\) into \((T_{(1)}, M).\)

  28. 28.

    As the name suggests, this is basically a free energy.

  29. 29.

    This is a vast subject with thousands of relevant papers. A nice selection, among those emphasizing the connection with combinatorial aspects, is provided by [1, 2, 15, 32, 3438].

  30. 30.

    Different geometrical aspects of the role of the hyperbolic point of view in open/closed string duality have been discussed also by Kaufmann and Penner [42].

  31. 31.

    Recall that these boundary components correspond, under hyperbolic completion, to the ideal vertices \(\sigma^0_{hyp}(k) := v ^0(k).\)

  32. 32.

    See [4] for a deep analysis and the relevant references.

References

  1. Aharony, O., Komargodski, Z., Razamat, S.S.: On the worldsheet theories of strings dual to free large N gauge theories. JHEP 0605, 16 (2006) arXiv:hep-th/06020226

    Article  MathSciNet  ADS  Google Scholar 

  2. Akhmedov E.T., Expansion in Feynman graphs as simplicial string theory, JETP Lett. 80, 218 (2004) (Pisma Zh. Eksp. Teor. Fiz. 80, 247 (2004)) arXiv:hep-th/0407018

    Google Scholar 

  3. Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum Geometry Cambridge Monograph on Mathematical Physics. Cambridge University Press , Cambridge (1997)

    Google Scholar 

  4. Baseilhac, S., Benedetti, R.: QHI, 3-manifolds scissors congruence classes and the volume conjecture. In: Ohtsuki, et al., T. (eds.) Invariants of Knots and 3-Manifolds. Geometry and Topology Monographs, vol. 4, pp. 13–28. Springer, Berlin (2002) arXiv:math.GT/0211053

    Google Scholar 

  5. Benedetti, R., Petronio, C.: Lectures on Hyperbolic Geometry: Universitext. Springer, New York (1992)

    Google Scholar 

  6. Bost, J.B., Jolicoeur, T.: A holomorphy property and the critical dimension in string theory from an index theorem. Phys. Lett. B 174, 273–276 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  7. Brézin, E., Itzykson, C., Parisi, G., Zuber, J.B.: Planar diagrams. Commun. Math. Phys. 59, 25–51 (1978)

    Article  ADS  Google Scholar 

  8. Cappelli, A., Friedan , D., Latorre, J.I.: c-theorem and spectral representation. Nucl. Phys. B, 352 616-670. (1991)

    Google Scholar 

  9. Cantor, M.: Elliptic operators and the decomposition of tensor fields. Bull. Am. Math. Soc. 5, 235–262 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapman, K.M., Mulase, M., Safnuk, B.: The Kontsevich constants for the volume of the moduli of curves and topological recursion. arXiv:1009.2055 math.AG

    Google Scholar 

  11. Chow, B., Chu, S-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Ni, L.: The Ricci Flow: Techniques and Applications: Part I: Geometric Aspects (Mathematical Surveys And Monographs), vol. 135. American Mathematical Society, Providence (2007)

    Google Scholar 

  12. Das, S.R., Naik, S., Wadia, S.R.: Quantization of the Liouville mode and string theory. Mod. Phys. Lett. A 4, 1033–1041 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  13. David, F.: Conformal field theories coupled to 2D gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651–1656 (1988)

    Article  ADS  Google Scholar 

  14. David, F., Bauer, M.: Another derivation of the geometrical KPZ relations. J. Stat. Mech. 3, P03004 (2009) arXiv:0810.2858

    Google Scholar 

  15. David, J.R., Gopakumar, R.: From spacetime to worldsheet: four point correlators. arXiv:hep-th/0606078

    Google Scholar 

  16. D’Hoker, E.: Lectures on strings, IASSNS-HEP-97/72

    Google Scholar 

  17. D’Hoker, E., Phong, D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60(4), 917–1065 (1988)

    Google Scholar 

  18. D’Hoker, E., Kurzepa, P.S.: 2D quantum gravity and Liouville theory. Mod. Phys. Lett. A 5, 1411–1422 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Di Francesco, P.: 2D quantum gravity, matrix models and graph combinatorics. Lectures Given at the Summer School Applications of Random Matrices in Physics, Les Houches, June 2004. arXiv:math-ph/0406013v2

    Google Scholar 

  20. Distler, J., Kaway, H.: Conformal field theory and 2d quantum gravity. Nucl. Phys. B 321, 509–527 (1989)

    Article  ADS  Google Scholar 

  21. Driver, B.K.: A Cameron–Martin type quasi-invariance theorem for Brownian motion on a compact manifold. J. Funct. Anal. 110, 272–376 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. (2008) arXiv:0808.1560

    Google Scholar 

  23. Ebin, D.: The manifolds of Riemannian metrics. Glob. Anal. Proc. Sympos. Pure Math. 15, 11–40 (1968)

    Google Scholar 

  24. Eynard, B.: Recursion between Mumford volumes of moduli spaces. arXiv:0706.4403math-ph

    Google Scholar 

  25. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347–452 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Eynard, B., Orantin, N.: Weil-Petersson volume of moduli spaces, Mirzhakhani’s recursion and matrix models. arXiv:0705.3600math-ph

    Google Scholar 

  27. Eynard, B., Orantin, N.: Geometrical interpretation of the topological recursion, and integrable string theory. arXiv:0911.5096math-ph

    Google Scholar 

  28. Faris, W.G. (ed): Diffusion, Quantum Theory, and Radically Elementary Mathematics: Mathematical Notes, vol. 47. Princeton University Press, Princeton (2006)

    Google Scholar 

  29. Fradkin, E.S., Tseytlin, A.A.: Effective field theory from quantized strings. Phys. Lett. B 158, 316 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Fradkin, E.S., Tseytlin, A.A.: Quantum string theory effective action. Nucl. Phys. B 261, 1 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  31. Friedan, D.: Nonlinear models in \(2+\varepsilon\) dimensions. Ann. Phys. 163, 318–419 (1985)

    Google Scholar 

  32. Gaiotto, D., Rastelli, L.: A paradigm of open/closed duality: Liouville D-branes and the Kontsevich model. JHEP 0507, 053 (2005) arXiv:hep-th/0312196

    Article  MathSciNet  ADS  Google Scholar 

  33. Giddings, S.B., Wolpert, S.A.: A triangulation of moduli space from light-cone string theory. Commun. Math. Phys. 109, 177–190 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Gopakumar, R.: From free fields to AdS. Phys. Rev. D 70, 025009 (2004) arXiv:hep-th/0308184

    Article  MathSciNet  ADS  Google Scholar 

  35. Gopakumar, R.: From free fields To Ads II. Phys. Rev. D 70, 025010 (2004) arXiv:hep-th/0402063

    Article  MathSciNet  ADS  Google Scholar 

  36. Gopakumar, R.: Free field theory as a string theory? Comptes Rendus Physique 5, 1111 (2004) arXiv:hep-th/0409233

    Google Scholar 

  37. Gopakumar, R.: From free fields to AdS III. Phys. Rev. D 72, 066008 (2005) arXiv:hep-th/0504229.

    Article  MathSciNet  ADS  Google Scholar 

  38. Gopakumar, R., Vafa, C.: Adv. Theor. Math. Phys. 3, 1415 (1999) hep-th/9811131.

    MathSciNet  MATH  Google Scholar 

  39. Harer, J.L., Zagier, D.: The Euler characteristic of the moduli space of curves. Inventiones Mathem. 85, 457–485 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Harer, J.L.: The cohomology of the moduli spaces of curves. In: Sernesi, E. (ed.) Theory of Moduli, Montecatini Terme. Lecture Notes in Mathematics, vol. 1337, pp. 138–221. Springer, Berlin (1988)

    Google Scholar 

  41. Kaku, M.: Strings Conformal Fields, and M-Theory. 2nd edn. Springer, New York (1999)

    Google Scholar 

  42. Kaufmann, R., Penner, R.C.: Closed/open string diagrammatics. arXiv:math.GT/0603485

    Google Scholar 

  43. Kiritis, E.: String Theory in a Nutshell. Princeton University Press, Princeton (2007)

    Google Scholar 

  44. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D quantum gravity. Mod. Phys. Lett. A 3, 819–826 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  45. Kokotov, A.: Compact polyhedral surfaces of an arbitrary genus and determinant of Laplacian. arXiv:0906.0717 (math.DG)

    Google Scholar 

  46. Kontsevitch, M.: Intersection theory on the moduli space of curves and the matrix Airy functions. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  Google Scholar 

  47. Leandre, R.: Stochastic Wess–Zumino–Novikov–Witten model on the torus. J. Math. Phys. 44, 5530–5568 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Manin, Y.I., Zograf, P.: Invertible cohomological filed theories and Weil-Petersson volumes. Annales de l’Institute Fourier 50, 519–535 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Menotti, P., Peirano, P.P.: Diffeomorphism invariant measure for finite dimensional geometries. Nucl. Phys. B 488, 719–734 (1997) arXiv:hep-th/9607071v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Mirzakhani, M.: Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math. 167, 179–222 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Mirzakhani, M.: Weil-Petersson volumes and intersection theory on the moduli spaces of curves. J. Am. Math. Soc. 20, 1–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Moroianu, S., Schlenker, J-M.: Quasi-fuchsian manifolds with particles. arXiv:math.DG/0603441

    Google Scholar 

  53. Mulase, M., Penkava, M.: Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(\overline{{\mathbb{Q} }}.\) Asian J. Math. 2, 875–920 (1998). math-ph/9811024 v2

    Google Scholar 

  54. Mulase, M., Safnuk, B.: Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy . Indian J. Math. 50, 189–228 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Selected Papers on the Classification of Varieties and Moduli Spaces, pp. 235–292. Springer, New York (2004)

    Google Scholar 

  56. Nakamura, S.: A calculation of the orbifold Euler number of the moduli space of curves by a new cell decomposition of the Teichmüller space. Tokyo J. Math. 23, 87–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Nakayama, Y.: Liouville field theory—a decade after the revolution. Int. J. Mod. Phys. A 19, 2771–2930 (2004) arXiv:hep-th/0402009

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Ohtsuki, T. (ed.): Problems on invariants of knots and 3-manifolds. In: Kohno, T., Le, T., Murakami, J., Roberts, J., Turaev, V. (eds.) Invariants of Knots and 3-Manifolds Geometry and Topology Monographs, vol. 4, p. 377 (2002)

    Google Scholar 

  59. Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys. 113, 299–339 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Penner, R.C.: Perturbation series and the moduli space of Riemann surfaces. J. Diff. Geom. 27, 35–53 (1988)

    MathSciNet  MATH  Google Scholar 

  61. Polchinski, J.: String Theory, vols. I and II. Cambridge University Press, Cambrdge (1998)

    Google Scholar 

  62. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207–210 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  63. Rivin, T.: Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. 139, 553–580 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  64. Shore, G.M.: A local renormalization group equation, diffeomorphisms, and conformal invariance in sigma models. Nucl. Phys. B 286, 349 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  65. Strebel, K.: Quadratic Differentials. Springer, Berlin (1984)

    MATH  Google Scholar 

  66. Taubes, C.H.: Constructions of measures and quantum field theories on mapping spaces. J. Diff. Geomet. 70, 23–58 (2005)

    Google Scholar 

  67. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461–470 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  68. Thurston, W.P.: Three-dimensional geometry and topology 1. In: Levy, S. (ed.) Princeton Mathematical Series, vol. 35. Princeton University Press, Princeton (1997)

    Google Scholar 

  69. Takthajan, L.A., Teo, L-P.: Quantum Liouville theory in the background field formalism I: compact Riemannian surfaces. Commun. Math. Phys. 268, 135–197 (2006)

    Article  ADS  Google Scholar 

  70. Tseytlin, A.A.: Conformal anomaly in two-dimensional sigma model on curved background and strings. Phys. Lett. 178, 34 (1986)

    Article  MathSciNet  Google Scholar 

  71. Tseytlin, A.A.: Sigma model Weyl invariance conditions and string equations of motion. Nucl. Phys. B 294, 383 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  72. Tutte, W.J.: A census of planar triangulations. Can. J. Math. 14, 21–38 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  73. Voevodskii, V.A., Shabat, G.B.: Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields. Soviet Math. Dokl. 39, 38 (1989)

    MathSciNet  Google Scholar 

  74. Weitsman, J.: Measures on Banach manifolds and supersymmetric quantum field theories. Commun. Math. Phys. 277, 101–125 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Witten, E.: Two dimensional gravity and intersection theory on moduli space. Surveys Diff. Geom. 1, 243 (1991)

    Google Scholar 

  76. Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2D field theory. JEPT Lett. 43, 730 (1986)

    MathSciNet  ADS  Google Scholar 

  77. Zamolodchikov, A., Zamolodchikov, A.: Lectures on Liouville Theory and Matrix Models.

    Google Scholar 

  78. Zograf, P.G.: Weil-Petersson volumes of moduli spaces of curves and the genus expansion in two dimensional gravity. math.AG/9811026

    Google Scholar 

  79. Zograf, P.G., Takhtadzhyan, L.A.: On Liouville’s equation, accessory parameters, and the geometry of Teichmuller space for Riemann surfaces of genus 0. Math. USRR Sbornik 60, 143–161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carfora, M., Marzuoli, A. (2012). The Quantum Geometry of Polyhedral Surfaces. In: Quantum Triangulations. Lecture Notes in Physics, vol 845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24440-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24440-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24439-1

  • Online ISBN: 978-3-642-24440-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics