Skip to main content

Supervised Learning of Graph Structure

  • Conference paper
Similarity-Based Pattern Recognition (SIMBAD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7005))

Included in the following conference series:

Abstract

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Erdös, P., Selkow, S.M.: Random Graph Isomorphism. SIAM J. Comput. 9(3), 635–638 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beichl, I., Sullivan, F.: Approximating the permanent via importance sampling with application to the dimer covering problem. J. Comput. Phys. 149(1), 128–147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonev, B., et al.: Constellations and the Unsupervised Learning of Graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 340–350. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bunke, H., et al.: Graph Clustering Using the Weighted Minimum Common Supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Advances in NIPS (2006)

    Google Scholar 

  6. Friedman, N., Koller, D.: Being Bayesian about Network Structure. Machine Learning 50(1-2), 95–125 (2003)

    Article  MATH  Google Scholar 

  7. He, X.C., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR 2004), vol. 2, pp. 791–794. IEEE Computer Society, Washington, DC, USA (2004)

    Google Scholar 

  8. Luo, B., Hancock, E.R.: A spectral approach to learning structural variations in graphs. Pattern Recognition 39, 1188–1198 (2006)

    Article  MATH  Google Scholar 

  9. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical report (February 1996)

    Google Scholar 

  10. Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism. em Neural Computation 11(8), 1933–1955 (1999)

    Article  Google Scholar 

  11. Rabbat, M.G., Figueiredo, M.A.T., Nowak, R.D.: Network Inference From Co-Occurrences. IEEE Trans. Information Theory 54(9), 4053–4068 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Siddiqi, K., et al.: Retrieving Articulated 3D Models Using Medial Surfaces. Machine Vision and Applications 19(4), 261–274 (2008)

    Article  MATH  Google Scholar 

  13. Sinkhorn, R.: A relationship between arbitrary positive matrices and double stochastic matrices. Ann. Math. Stat. 35, 876–879 (1964)

    Article  MATH  Google Scholar 

  14. Torsello, A., Hancock, E.R.: Learning Shape-Classes Using a Mixture of Tree-Unions. IEEE Trans. Pattern Anal. Machine Intell. 28(6), 954–967 (2006)

    Article  Google Scholar 

  15. Torsello, A.: An Importance Sampling Approach to Learning Structural Representations of Shape. In: IEEE CVPR (2008)

    Google Scholar 

  16. Torsello, A., Dowe, D.: Learning a generative model for structural representations. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 573–583. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Torsello, A., Hidovic-Rowe, D., Pelillo, M.: Polynomial-time metrics for attributed trees. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1087–1099 (2005)

    Article  Google Scholar 

  18. White, D., Wilson, R.C.: Spectral Generative Models for Graphs. In: Int. Conf. Image Analysis and Processing, pp. 35–42. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torsello, A., Rossi, L. (2011). Supervised Learning of Graph Structure. In: Pelillo, M., Hancock, E.R. (eds) Similarity-Based Pattern Recognition. SIMBAD 2011. Lecture Notes in Computer Science, vol 7005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24471-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24471-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24470-4

  • Online ISBN: 978-3-642-24471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics