Skip to main content

High-Power VCSEL Arrays

  • Chapter
  • First Online:
VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

We review recent developments on high-power , high-efficiency two-dimensional vertical-cavity surface-emitting laser (VCSEL) arrays emitting around 808 and 980 nm. Selectively oxidized, bottom-emitting single VCSEL emitters with 50% power conversion efficiency were developed as the basic building block of these arrays . More than 230 W of continuous-wave (CW) power is demonstrated from a \(5\,\hbox{mm} \,{\times}\, 5\,\hbox{mm} \) array chip. In quasi-CW mode, smaller array chips exhibit 100 W output power, corresponding to more than \(3.5\,\hbox{kW}/\hbox{cm}^{2}\) of power-density. High-brightness VCSEL pumps have been developed, delivering a fiber output power of 40 W, corresponding to a brightness close to \(50\,\hbox{kW}/(\hbox{cm}^{2}\, \hbox{sr}).\) High-energy VCSEL arrays in the milli-Joule range have also been developed. Many of the advantages of low-power single VCSEL devices such as reliability , wavelength stability, low-divergence circular beam, and low-cost manufacturing are preserved for these high-power arrays . VCSELs thus offer an attractive alternative to the dominant edge-emitter technology for many applications requiring compact high-power laser sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A similar approach for optimizing the VCSEL operating point was presented in [37], albeit with a slightly different formulation. In particular, the authors consider the dependence of the “electrical confinement factor” (which is essentially the internal quantum efficiency ) on the output mirror reflectivity. We found this dependence negligeable for our devices and therefore tend to ignore it, as it greatly simplifies the analysis.

  2. 2.

    For a given device, the expression for the operating current at the maximum PCE can be derived as \(I_{e,m}=I_{th}(1+\sqrt{1+\alpha}),\) and can also be obtained directly from the derivative analysis of the electrical characteristics. Also, it can be seen that—within the approximations of the present analysis—a laser’s point of maximum PCE will always occur at a drive current greater than twice the threshold current .

References

  1. M. Kanskar, T. Earles, T. Goodnough, E. Stiers, D. Botez, L. Mawst, 73% CW power conversion efficiency at 50 W from 970 nm diode laser bars. Electron. Lett. 41(5), 245 (2005)

    Article  Google Scholar 

  2. Lawrence Livermore National Laboratory, National Ignition Facility (LLNL, 2009), http://www.lasers.llnl.gov/about/missions/energy_for_the_future/life/

  3. A. Moser, E.E. Latta, Arrhenius parameters for the rate process leading to catastrophic damage of AlGaAs-GaAs laser facets. J. Appl. Phys. 71(10), 4848 (1992)

    Article  ADS  Google Scholar 

  4. G. Evans, D. Bour, N. Carlson, R. Amantea, J. Hammer, H. Lee, M. Lurie, R. Lai, P. Pelka, R. Farkas, J. Kirk, S. Liew, W. Reichert, C. Wang, H. Choi, J. Walpole, J. Butler, W. Ferguson Jr., R. DeFreez, M. Felisky, Characteristics of coherent two-dimensional grating surface emitting diode laser arrays during CW operation. IEEE J. Quantum Electron. 27(6), 1594 (1991)

    Article  ADS  Google Scholar 

  5. R.M. Lammert, S.W. Oh, M.L. Osowski, C. Panja, P.T. Rudy, T.S. Stakelon, J.E. Ungar, Advances in high brightness semiconductor lasers, in High-Power Diode Laser Technology and Applications IV, ed. by M.S. Zediker. Proceedings of SPIE, vol. 6104 (2006), p. 61040I-1

    Google Scholar 

  6. N. Margalit, S. Zhang, J. Bowers, Vertical cavity lasers for telecom applications. IEEE Commun. Mag. 35(5), 164 (1997)

    Google Scholar 

  7. K. Giboney, L. Aronson, B. Lemoff, The ideal light source for datanets. IEEE Spectr. 35(2), 43 (1998)

    Google Scholar 

  8. F. Peters, M. Peters, D. Young, J. Scott, B. Thibeault, S. Corzine, L. Coldren, High-power vertical-cavity surface-emitting lasers. Electron. Lett. 29(2), 200 (1993)

    Article  ADS  Google Scholar 

  9. M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, K. Ebeling, Bottom-emitting VCSEL’s for high-CW optical output power. IEEE Photon. Technol. Lett. 10(8), 1061 (1998)

    Article  ADS  Google Scholar 

  10. D. Francis, H.-L. Chen, W. Yuen, G. Li, C. Chang-Hasnain, Monolithic 2D-VCSEL array with \({>}2\,\hbox{W}\) CW and \({>}5\,\hbox{W}\) pulsed output power. Electron. Lett. 34(22), 2132 (1998)

    Google Scholar 

  11. M. Miller, M. Grabherr, R. Jager, K. Ebeling, High-power VCSEL arrays for emission in the watt regime at room temperature. IEEE Photon. Technol. Lett. 13(3), 173 (2001).

    Article  ADS  Google Scholar 

  12. L. D’Asaro, J. Seurin, J. Wynn, High-power, high efficiency VCSELs pursue the goal. Photon. Spectra 2, 64 (2005)

    Google Scholar 

  13. K. Choquette, H. Hou, Vertical-cavity surface emitting lasers: moving from research to manufacturing. Proc. IEEE 85(11), 1730 (1997)

    Google Scholar 

  14. J.A. Tatum, A. Clark, J.K. Guenter, R.A. Hawthorne III, R.H. Johnson, Commercialization of Honeywell’s VCSEL technology, in Vertical-Cavity Surface-Emitting Lasers IV, ed. byK.D. Choquette, C. Lei. Proceedings of SPIE, vol. 3946 (2000), p. 2

    Google Scholar 

  15. A. Timmermann, J. Meinschien, P. Bruns, C. Burke, D. Bartoschewski, Next generation high-brightness diode lasers offer new industrial applications, in High-Power Diode Laser Technology and Applications VI, ed. by M.S. Zediker. Proceedings of SPIE, vol. 6876 (2008), p. 68760U-1

    Google Scholar 

  16. U. Steegmüller, M. Kühnelt, H. Unold, T. Schwarz, R. Schulz, S. Illek, I. Pietzonka, H. Lindberg, M. Schmitt, U. Strauss, Green laser modules to fit laser projection out of your pocket, in Solid State Lasers XVII: Technology and Devices, ed. by W.A. Clarkson, N. Hodgson, R.K. Shori. Proceedings of SPIE, vol. 6871 (2008), p. 687117-1

    Google Scholar 

  17. G. Town, C. Ash, Measurement of home-use laser and intense pulsed light systems for hair removal: preliminary report. J. Cosmet. Laser Ther. 11(3), 157 (2009)

    Article  Google Scholar 

  18. J. Geske, C. Wang, M. MacDougal, R. Stahl, D. Follman, H. Garrett, T. Meyrath, D. Snyder,E. Golden, J. Wagener, J. Foley, High power VCSELs for miniature optical sensors, in Vertical-Cavity Surface-Emitting Lasers XIV, ed. by J.K. Guenter, K.D. Choquette. Proceedings of SPIE, vol. 7615 (2010), p. 76150E-1

    Google Scholar 

  19. J.-F. Seurin, G. Xu, B. Guo, A. Miglo, Q. Wang, P. Pradhan, J.D. Wynn, V. Khalfin, W.-X. Zou, C.L. Ghosh, Efficient vertical-cavity surface-emitting lasers for infrared illumination applications, in Vertical-Cavity Surface-Emitting Lasers XV, ed. by J.K. Guenter, C. Lei. Proceedings of SPIE, vol. 7952 (2011), p. 795215-1

    Google Scholar 

  20. M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, R. King, Commercial VCSELs reach 0.1-W CW output power, in Vertical-Cavity Surface-Emitting Lasers VIII, ed. by C. Lei, K.D. Choquette, S.P. Kilcoyne. Proceedings of SPIE, vol. 5364 (2004), p. 174

    Google Scholar 

  21. R. Morgan, M. Hibbs-Brenner, T. Marta, R. Walterson, S. Bounnak, E. Kalweit, J. Lehman, \(200^\circ\hbox{C},\) 96-nm wavelength range, continuous-wave lasing from unbonded GaAs MOVPE-grown vertical cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 7(5), 441(1995)

    Google Scholar 

  22. F. Hopfer, A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V.A. Shchukin, N.N. Ledentsov,S.S.S. Mikhrin, I.L. Krestnikov, D.A. Livshits, A.R. Kovsh, M. Kuntz, D. Bimberg, \(120^\circ\hbox{C}\) 20 Gbit/s operation of 980 nm VCSEL based on sub-monolayer growth, in Vertical-Cavity Surface-Emitting Lasers XIII, ed. by K.D. Choquette, C. Lei. Proceedings of SPIE, vol. 7229 (2009), p. 72290-1

    Google Scholar 

  23. L. D’Asaro, J. Seurin, C. Ghosh, Powerful VCSEL arrays beat the heat. Laser Focus World 43(11), 81 (2007)

    Google Scholar 

  24. K. Lear, K. Choquette, R.P. Schneider Jr., S. Kilcoyne, K. Geib, Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency. Electron. Lett. 31(3), 208 (1995)

    Google Scholar 

  25. R. Michalzik, M. Grabherr, K.J. Ebeling, High-power VCSELs: modeling and experimental characterization, in Vertical-Cavity Surface-Emitting Lasers II. ed. by K.D. Choquette, R.A. Morgan. Proceedings of SPIE, vol. 3286 (1998), p. 206

    Google Scholar 

  26. J.-F. Seurin, C.L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J.D. Wynn, P. Pradhan, L.A. D’Asaro, High-power high-efficiency 2D VCSEL arrays, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter. Proceedings of SPIE, vol. 6908 (2008), p. 690808-1

    Google Scholar 

  27. J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J.D. Wynn, P. Pradhan, C.L. Ghosh, L.A. D’Asaro, Progress in high-power high-efficiency VCSEL arrays, in Vertical-Cavity Surface-Emitting Lasers XIII, ed. by K.D. Choquette, C. Lei. Proceedings of SPIE, vol. 7229 (2009), p. 722903-1

    Google Scholar 

  28. J.M. Dallesasse, J.N. Holonyak, A.R. Sugg, T.A. Richard, N. El-Zein, Hydrolyzation oxidation of \(\hbox{Al}_x\hbox{Ga}_{1 - x}\) As-AlAs-GaAs quantum well heterostructures and superlattices. Appl. Phys. Lett. 57(26), 2844 (1990)

    Google Scholar 

  29. D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett. 65(1), 97 (1994)

    Article  ADS  Google Scholar 

  30. G.M. Yang, M. MacDougal, V. Pudikov, P. Dapkus, Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 7(11), 1228 (1995)

    Google Scholar 

  31. A. Bond, P. Dapkus, J. O’Brien, Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 10(10), 1362 (1998)

    Article  ADS  Google Scholar 

  32. E. Hegblom, N. Margalit, A. Fiore, L. Coldren, High-performance small vertical-cavity lasers: a comparison of measured improvements in optical and current confinement in devices using tapered apertures. IEEE J. Select. Topics Quantum Electron. 5(3), 553 (1999)

    Google Scholar 

  33. E.R. Hegblom, N.M. Margalit, B. Thibeault, L.A. Coldren, J.E. Bowers, Current spreading in apertured vertical-cavity lasers, in Vertical-Cavity Surface-Emitting Lasers, ed. by K.D. Choquette, D.G. Deppe. Proceedings of SPIE, vol. 3003 (1997), p. 176

    Google Scholar 

  34. M.G. Peters, B.J. Thibeault, D.B. Young, A.C. Gossard, L.A. Coldren, Growth of beryllium doped \(\hbox{Al}_x\hbox{Ga}_{1 - x}\)As/GaAs mirrors for vertical-cavity surface-emitting lasers. J. Vac. Sci Technol. B 12(6), 3075 (1994)

    Google Scholar 

  35. D. Babic, S. Corzine, Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron. 28(2), 514(1992)

    Google Scholar 

  36. D.P. Bour, A. Rosen, Optimum cavity length for high conversion efficiency quantum well diode lasers. J. Appl. Phys. 66(7), 2813 (1989)

    Google Scholar 

  37. G. Taylor, Q. Yang, Optimization of the operating point of a vertical-cavity surface-emitting laser. IEEE J. Quantum Electron. 32(8), 1441 (1996)

    Google Scholar 

  38. L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, New York, 1995)

    Google Scholar 

  39. P. Barnes, T. Paoli, Derivative measurements of the current-voltage characteristics of double-heterostructure injection lasers. IEEE J. Quantum Electron. 12(10), 633 (1976)

    Google Scholar 

  40. J. Li, J.-F. Seurin, S.L. Chuang, K.D. Choquette, K.M. Geib, H.Q. Hou, Correlation of electrical and optical characteristics of selectively oxidized vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 70(14), 1799 (1997)

    Article  ADS  Google Scholar 

  41. K. Lear, S. Kilcoyne, S. Chalmers, High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers. IEEE Photon. Technol. Lett. 6(7), 778 (1994)

    Google Scholar 

  42. R. Naone, P. Floyd, D. Young, E. Hegblom, T. Strand, L. Coldren, Interdiffused quantum wells for lateral carrier confinement in VCSELs. IEEE J. Select. Topics Quantum Electron. 4(4), 706 (1998)

    Google Scholar 

  43. D. Lofgreen, Y.-C. Chang, L. Coldren, Vertical-cavity surface-emitting lasers with lateral carrier confinement. Electron. Lett. 43(3), 163 (2007)

    Google Scholar 

  44. D. Bimberg, N. Kirstaedter, N. Ledentsov, Z. Alferov, P. Kop’ev, V. Ustinov, InGaAs–GaAs quantum-dot lasers. IEEE J. Select. Topics Quantum Electron. 3(2), 196 (1997)

    Google Scholar 

  45. G. Liu, A. Stintz, H. Li, T. Newell, A. Gray, P. Varangis, K. Malloy, L. Lester, The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures. IEEE J. Quantum Electron. 36(11), 1272 (2000)

    Google Scholar 

  46. N.-H. Kim, J.-H. Park, L. Mawst, T. Kuech, M. Kanskar, Temperature sensitivity of InGaAs quantum-dot lasers grown by MOCVD. IEEE Photon. Technol. Lett. 18(8), 989 (2006)

    Google Scholar 

  47. E.C. Yu, M. Osinski, W. Nakwaski, M. Turowski, A.J. Przekwas, Thermal crosstalk in arrays of proton-implanted top-surface-emitting lasers, in Physics and Simulation of Optoelectronic Devices VI, ed. by M. Osinski, P. Blood, A. Ishibashi. Proceedings of SPIE, vol. 3283 (1998), p. 384

    Google Scholar 

  48. M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. Unold, K. Ebeling, High-power VCSELs: single devices and densely packed 2-D-arrays. IEEE J. Select. Topics Quantum Electron. 5(3), 495 (1999)

    Google Scholar 

  49. H.-L. Chen, D. Francis, T. Nguyen, W. Yuen, G. Li, C. Chang-Hasnain, Collimating diode laser beams from a large-area VCSEL-array using microlens array. IEEE Photon. Technol. Lett. 11(5), 506 (1999)

    Google Scholar 

  50. J.-F. Seurin, G. Xu, Q. Wang, B. Guo, R.V. Leeuwen, A. Miglo, P. Pradhan, J.D. Wynn, V. Khalfin, C.L. Ghosh, High-brightness pump sources using 2D VCSEL arrays, in Vertical-Cavity Surface-Emitting Lasers XIV, ed. by J.K. Guenter, K.D. Choquette. Proceedings of SPIE, vol. 7615 (2010), p. 76150F-1

    Google Scholar 

  51. J.E. Nettleton, B.W. Schilling, D.N. Barr, J.S. Lei, Monoblock laser for a low-cost, eyesafe, microlaser range finder. Appl. Opt. 39(15), 2428 (2000)

    Article  ADS  Google Scholar 

  52. J.-F. Seurin, C.L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J.D. Wynn, P. Pradhan, L.A. D’Asaro, High-power vertical-cavity surface-emitting arrays, in High-Power Diode Laser Technology and Applications VI, ed. by M.S. Zediker. Proceedings of SPIE, vol. 6876 (2008), p. 68760D-1

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge his colleagues at Princeton Optronics who have contributed to the work summarized in this chapter. This work was supported in part by the DARPA program on Super High Efficiency Diode Sources (SHEDS), contract # HR0011-04-C-0139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François P. Seurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seurin, JF.P. (2013). High-Power VCSEL Arrays. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics