Skip to main content

Multiscale Extension of the Gravitational Approach to Edge Detection

  • Conference paper
Advances in Artificial Intelligence (CAEPIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7023))

Included in the following conference series:

  • 1292 Accesses

Abstract

The multiscale techniques for edge detection aim to combine the advantages of small and large scale methods, usually by blending their results. In this work we introduce a method for the multiscale extension of the Gravitational Edge Detector based on a t-norm T. We smoothen the image with a Gaussian filter at different scales then perform inter-scale edge tracking. Results are included illustrating the improvements resulting from the application of the multiscale approach in both a quantitative and a qualitative way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the gaussian kernel for scale-space filtering. IEEE Trans. on Pattern Analysis and Machine Intelligence 8(1), 26–33 (1986)

    Article  MATH  Google Scholar 

  2. Baddeley, A.J.: Errors in binary images and an L p version of the Hausdorff metric. Nieuw Archief voor Wiskunde 10, 157–183 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Carlotto, M.J.: Histogram analysis using a scale-space approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 9(1), 121–129 (1987)

    Article  Google Scholar 

  5. Coleman, S., Scotney, B., Suganthan, S.: Multi-scale edge detection on range and intensity images. Pattern Recognition 44(4), 821–838 (2011)

    Article  MATH  Google Scholar 

  6. Demigny, D.: On optimal linear filtering for edge detection. IEEE Trans. on Image Processing 11(7), 728–737 (2002)

    Article  Google Scholar 

  7. Florack, L., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12, 65–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heath, M., Sarkar, S., Sanocki, T., Bowyer, K.: A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(12), 1338–1359 (1997)

    Article  Google Scholar 

  9. Jackway, P., Deriche, M.: Scale-space properties of the multiscale morphological dilation-erosion. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(1), 38–51 (1996)

    Article  Google Scholar 

  10. Konishi, S., Yuille, A., Coughlan, J.: A statistical approach to multi-scale edge detection. Image and Vision Computing 21(1), 37–48 (2003)

    Article  Google Scholar 

  11. Leung, Y., Zhang, J.S., Xu, Z.B.: Clustering by scale-space filtering. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(12), 1396–1410 (2000)

    Article  Google Scholar 

  12. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 30(2), 117–156 (1998)

    Article  Google Scholar 

  13. Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., De Baets, B.: A gravitational approach to edge detection based on triangular norms. Pattern Recognition 43(11), 3730–3741 (2010)

    Article  MATH  Google Scholar 

  14. Mallat, S., Hwang, W.: Singularity detection and processing with wavelets. IEEE Trans. on Information Theory 38(2), 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of the Royal Society of London 207(1167), 187–217 (1980)

    Article  Google Scholar 

  16. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  17. McIlhagga, W.: The canny edge detector revisited. International Journal of Computer Vision 91, 251–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peli, T., Malah, D.: A study of edge detection algorithms. Computer Graphics and Image Processing 20(1), 1–21 (1982)

    Article  MATH  Google Scholar 

  19. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  20. Prewitt, J.M.S.: Object enhancement and extraction. In: Picture Processing and Psychopictorics, pp. 75–149. Academic Press (1970)

    Google Scholar 

  21. Qian, R., Huang, T.: Optimal edge detection in two-dimensional images. IEEE Trans. on Image Processing 5(7), 1215–1220 (1996)

    Article  Google Scholar 

  22. Rosin, P.L.: Unimodal thresholding. Pattern Recognition 34(11), 2083–2096 (2001)

    Article  MATH  Google Scholar 

  23. Russo, F.: FIRE operators for image processing. Fuzzy Sets and Systems 103(2), 265–275 (1999)

    Article  MathSciNet  Google Scholar 

  24. Shih, M.Y., Tseng, D.C.: A wavelet-based multiresolution edge detection and tracking. Image and Vision Computing 23(4), 441–451 (2005)

    Article  Google Scholar 

  25. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing (1968); presented at a talk at the Stanford Artificial Intelligence Project

    Google Scholar 

  26. Sun, G., Liu, Q., Liu, Q., Ji, C., Li, X.: A novel approach for edge detection based on the theory of universal gravity. Pattern Recognition 40(10), 2766–2775 (2007)

    Article  MATH  Google Scholar 

  27. Torre, V., Poggio, T.: On edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8, 147–163 (1984)

    Google Scholar 

  28. Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series, Teubner-Verlag (1998)

    Google Scholar 

  29. Witkin, A.P.: Scale-Space Filtering. In: 8th Int. Joint Conf. Artificial Intelligence, Karlsruhe, vol. 2, pp. 1019–1022 (1983)

    Google Scholar 

  30. Yuille, A.L., Poggio, T.A.: Scaling theorems for zero crossings. IEEE Trans. on Pattern Analisys and Machine Intelligence 8, 15–25 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez-Molina, C., De Baets, B., Bustince, H., Barrenechea, E., Galar, M. (2011). Multiscale Extension of the Gravitational Approach to Edge Detection. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds) Advances in Artificial Intelligence. CAEPIA 2011. Lecture Notes in Computer Science(), vol 7023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25274-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25274-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25273-0

  • Online ISBN: 978-3-642-25274-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics