Skip to main content

Abstract

For about two decades, the lattice Boltzmann method (LBM) has made a major breakthrough in the numerical solution of fluid flow problems and has become a real and efficient alternative with respect to the traditional route of CFD tools and software. Seen from afar, the method looks like a toy algorithm that is easily written as a one page program to solve, for example, the square cavity problem. However, if a more careful and thorough analysis is undertaken, the method reveals itself as a very acute and deep instrument to simulate the behavior of complex fluid motion. LBM represents the motion of virtual particles that collide according to some simple rules and then stream and move across a computational grid named the lattice. These particles mimic the fluid flow and yield excellent results for many difficult problems. The design of the underlying model is made at the mesoscopic scale, that is, at an intermediate scale between the continuous representation and the nanoscale. Nevertheless a multi-scale analysis using the Chapman-Enskog expansion produces the well known (weakly compressible) Navier-Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balakrishnan R (2004) An approach to entropy consistency in second-order hydrodynamic equations. J Fluid Mech 503:201–245

    Article  MATH  MathSciNet  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511–525

    Article  MATH  Google Scholar 

  • Bouzidi M, d’Humières D, Lallemand P, Luo L-S (2001) Lattice Boltzmann equation on a two-dimensional rectangular grid. J Comput Phys 172:704–717

    Article  MATH  Google Scholar 

  • Burnett D (1935) The distribution of velocities and mean motion in a slight nonuniform gas. Proc Lond Math Soc 39:385–430

    Article  Google Scholar 

  • Cercignani C (1988) The Boltzmann equation and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Chapman S, Cowling TG (1960) The mathematical theory of nonuniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. In: Annual review of fluid mechanics. Annual Reviews, New York, pp 329–364

    Google Scholar 

  • Chopard B, Falcone J-L, Latt J (2009) The lattice Boltzmann advection-diffusion model revisited. Eur Phys J 171:245–249

    Google Scholar 

  • Dellar PJ (2003) Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J Comput Phys 190:351–370

    Article  MATH  MathSciNet  Google Scholar 

  • d’Humières D (1992) Generalized lattice-Boltzmann equations. In: Shizgal BD, Weaver DP (eds) Rarefied gas dynamics: theory and applications. Progress in astronautics and aeronautics, vol 159. AIAA, Washington, pp 450–458

    Google Scholar 

  • d’Humières D, Bouzidi M, Lallemand P (2001) Thirteen-velocity three-dimensional lattice Boltzmann model. Phys Rev E 63:066702

    Article  Google Scholar 

  • d’Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L-S (2002) Multiple-relaxation-time lattice Boltzmann models in three-dimensions. Philos Trans R Soc Lond A 360:437–451

    Article  MATH  Google Scholar 

  • El-Kareh AW, Leal LG (1989) Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J Non-Newton Fluid Mech 33:257–287

    Article  MATH  Google Scholar 

  • Giraud L, d’Humières D, Lallemand P (1997) A lattice-Boltzmann model for visco-elasticity. Int J Mod Phys C 8:805–815

    Article  Google Scholar 

  • Giraud L, d’Humières D, Lallemand P (1998) A lattice Boltzmann model for Jeffreys viscoelastic fluid. Europhys Lett 42:625–630

    Article  Google Scholar 

  • Grad H (1949a) Note on the N-dimensional Hermite polynomials. Commun Pure Appl Math 2:325–330

    Article  MATH  MathSciNet  Google Scholar 

  • Grad H (1949b) On the kinetic theory of rarefied gases. Commun Pure Appl Math 9:331–407

    Article  MathSciNet  Google Scholar 

  • Gross EP, Jackson EA (1959) Kinetic models and the linearized Boltzmann equation. Phys Fluids 2:432–441

    Article  MATH  MathSciNet  Google Scholar 

  • Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 2:325–342

    Article  MathSciNet  Google Scholar 

  • Huang K (1987) Statistical mechanics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Kehrwald D (2005) Lattice Boltzmann simulation of shear-thinning fluids. J Stat Phys 121:223–237

    Article  MATH  MathSciNet  Google Scholar 

  • Krafczyk M, Tölke J, Luo L-S (2003) Large-eddy simulations with a multiple-relaxation-time LBE model. Int J Mod Phys 17:33–39

    Article  Google Scholar 

  • Lallemand P, Luo L-S (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61:6546–6562

    Article  MathSciNet  Google Scholar 

  • Lallemand P, d’Humières D, Luo LS, Rubinstein R (2003) Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids. Phys Rev E 67:021203

    Article  MathSciNet  Google Scholar 

  • Lammers P, Beronov KN, Volkert R, Brenner G, Durst F (2006) Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow. Comput Fluids 35:1137–1153

    Article  MATH  Google Scholar 

  • Latt J (2007) Hydrodynamic limit of lattice Boltzmann equations. PhD dissertation, University of Geneva, Geneva, Switzerland. http://www.unige.ch/cyberdocuments/theses2007/LattJ/meta.html

  • Malaspinas O (2009) Lattice Boltzmann method for the simulation of viscoelastic fluid flows. PhD dissertation, number 4505. EPFL, Lausanne, Switzerland

    Google Scholar 

  • Malaspinas O, Fiétier N, Deville M (2010) Lattice Boltzmann method for the simulation of viscoelastic fluid flows. J Non-Newton Fluid Mech 165:1637–1653

    Article  Google Scholar 

  • Onishi J, Chen Y, Ohashi H (2005) A lattice Boltzmann model for polymeric liquids. Prog Comput Fluid Dyn 5:75–84

    Article  Google Scholar 

  • Onishi J, Chen Y, Ohashi H (2006) Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method. Physica A 362:84–92

    Article  Google Scholar 

  • Premnath KN, Pattison MJ, Banerjee S (2009a) Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method. Physica A 388:2640–2658

    Article  Google Scholar 

  • Premnath KN, Pattison MJ, Banerjee S (2009b) Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method. Phys Rev E 362:026703

    Article  MathSciNet  Google Scholar 

  • Sagaut P (2010) Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: theoretical formulations. Comput Math Appl 59:2191–2199

    Article  MathSciNet  Google Scholar 

  • Shan X, Chen H (2007) A general multiple-relaxation-time Boltzmann collision model. Int J Mod Phys C 18:635–643. doi:10.1017/S0022112005008153

    Article  MATH  MathSciNet  Google Scholar 

  • Shan X, Yuan X-F, Chen H (2006) Kinetic theory representation of hydrodynamics: a way beyond the Navier Stokes equation. J Fluid Mech 550:413–441. doi:10.1017/S0022112005008153

    Article  MATH  MathSciNet  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Succi S, Karlin IV, Chen H (2002) Colloquium: role of the H theorem in lattice Boltzmann hydrodynamic simulations. Rev Mod Phys 74:1203–1220

    Article  Google Scholar 

  • Tölke J, Krafczyk M, Schulz M, Rank E (2000) Discretization of the Boltzmann equation in velocity space using a Galerkin approach. Comput Phys Commun 129:91–99

    Article  MATH  Google Scholar 

  • Truesdell C, Muncaster RG (1980) Fundamentals of Maxwell’s kinetic theory of monatomic gas, treated as a branch of rational mechanics. Academic Press, New York

    Google Scholar 

  • Wagner AJ, Giraud L, Scott CE (2000) Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method. Comput Phys Commun 129:227–232

    Article  MATH  Google Scholar 

  • Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Lecture notes in mathematics, vol 1725. Springer, Berlin

    MATH  Google Scholar 

  • Woods LC (1993) An introduction to the kinetic theory of gases and magnetoplasmas. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Yu H, Girimaji SS (2005a) DNS of homogeneous shear turbulence revisited with the lattice Boltzmann method. J Turbul 6:N6. doi:10.1080/14685240500103200

    Article  Google Scholar 

  • Yu H, Girimaji SS (2005b) Near-field turbulent simulations of rectangular jets using lattice Boltzmann method. Phys Fluids 17:125106

    Article  Google Scholar 

  • Yu H, Girimaji SS (2006) Direct numerical simulations of homogeneous turbulence subject to periodic shear. J Fluid Mech 566:117–151

    Article  MATH  MathSciNet  Google Scholar 

  • Yu H, Mei R, Luo L-S, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equations. Prog Aerosp Sci 39:329–367

    Article  Google Scholar 

  • Yu H, Girimaji SS, Luo L-S (2005a) DNS and LES of decaying isotropic turbulence with and without frame rotation using the lattice Boltzmann method. J Comput Phys 209:599–616

    Article  MATH  Google Scholar 

  • Yu H, Girimaji SS, Luo L-S (2005b) Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. Phys Rev E 71:061708

    Article  Google Scholar 

  • Yu H, Luo L-S, Girimaji SS (2006) LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput Fluids 35:957–965

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel O. Deville .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deville, M.O., Gatski, T.B. (2012). The Boltzmann Equation. In: Mathematical Modeling for Complex Fluids and Flows. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25295-2_7

Download citation

Publish with us

Policies and ethics