Skip to main content

Distribution of Computational Effort in Parallel MOEA/D

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6683))

Included in the following conference series:

Abstract

MOEA/D is a multi-objective optimization algorithm based on decomposition, which consists in dividing a multi-objective problem into a number of single-objective sub-problems. This work presents two variants, called pMOEA/Dv1 and pMOEA/Dv2, of a new parallel model of MOEA/D that have been developed under the observation that different sub-problems may require different computational effort, and thus, demand different number of evaluations. Our interest in this paper is to analyze whether the proposed models are able of outperforming the MOEA/D in terms of the quality of the computed fronts. To cope with this issue, our proposals have been evaluated using a benchmark composed of eight problems and the obtained results have been compared against MOEA/D-DE, an extension of the original MOEA/D where new individuals are generated by an operator taken from differential evolution. Our experiments show that some configurations of pMOEA/Dv1 and pMOEA/Dv2 have been able to compute fronts of higher quality than MOEA/D-DE in many of the evaluated problems, giving room for further research in this line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Branke, J., Schmeck, H., Deb, K., Reddy, M.,, S.: Parallelizing multi-objective evolutionary algorithms: cone separation. In: Congress on Evolutionary Computation, CEC 2004, vol. 2, pp. 1952–1957 (2004)

    Google Scholar 

  2. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Durillo, J.J., Nebro, A.J., Alba, E.: The jmetal framework for multi-objective optimization: Design and architecture. In: Proceedings of the IEEE 2010 Congress on Evolutionary Computation, pp. 4138–4325 (2010)

    Google Scholar 

  4. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Technical Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

  5. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 2(12), 284–302 (2009)

    Article  Google Scholar 

  6. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Norwell (1999)

    MATH  Google Scholar 

  7. Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 303–317. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 1(6), 712–731 (2007)

    Article  Google Scholar 

  9. Zhang, Q., Zhou, A., Li, H.: The performance of a new version of MOEA/D on cec09 unconstrained mop test instances. Technical Report CES-491, School of CS & EE, University of Essex (2009)

    Google Scholar 

  10. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durillo, J.J., Zhang, Q., Nebro, A.J., Alba, E. (2011). Distribution of Computational Effort in Parallel MOEA/D. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics