Skip to main content

Parametric Inference for Discretely-Observed Diffusions

  • Chapter
  • First Online:
Inference for Diffusion Processes
  • 1951 Accesses

Abstract

In real applications, diffusion models are often known in parametric form for which one wishes to estimate the model parameters. Statistical inference for diffusions is, however, challenging. The difficulty that underlies most approaches is the general intractability of the transition density for discrete-time observations. This chapter reviews frequentist parametric inference for discretely-observed diffusion processes. In order to get to the heart of the problem, it starts with the formulation of the estimation problem for continuous-time observations and then goes over to discrete time under the assumption that the likelihood function of the parameter is known. Both scenarios are not directly applicable in practice. The remaining techniques covered in this chapter are more advanced. These are approximations of the likelihood function, alternatives to maximum likelihood estimation and a recent approach called the Exact Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aït-Sahalia Y (1996) Nonparametric pricing of interest rate derivative securities. Econometrica 64:527–560

    Article  MATH  Google Scholar 

  • Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70:223–262

    Article  MathSciNet  MATH  Google Scholar 

  • Aït-Sahalia Y (2008) Closed-form likelihood expansions for multivariate diffusions. Ann Stat 36:906–937

    Article  MATH  Google Scholar 

  • Beskos A, Roberts G (2005) Exact simulation of diffusions. Ann Appl Probab 15:2422–2444

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts G (2006a) Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12:1077–1098

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts G, Fearnhead P (2006b) Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with comments). J R Stat Soc Ser B 68:333–382

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts G (2008) A factorisation of diffusion measure and finite sample path constructions. Methodol Comput Appl Probab 10:85–104

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts G (2009) Monte-Carlo maximum likelihood estimation for discretely observed diffusion processes. Ann Stat 37:223–245

    Article  MathSciNet  MATH  Google Scholar 

  • Bibby B, Sørensen M (1995) Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1:17–39

    Article  MathSciNet  MATH  Google Scholar 

  • Bibby B, Sørensen M (2001) Simplified estimating functions for diffusion models with a high-dimensional parameter. Scand J Stat 28:99–112

    Article  MATH  Google Scholar 

  • Bibby B, Jacobsen M, Sørensen M (2009) Estimating functions for discretely sampled diffusion-type models. In: Aït-Sahalia Y, Hansen L (eds) Handbook of financial econometrics. North-Holland, Amsterdam, pp 203–268

    Google Scholar 

  • Brandt M, Santa-Clara P (2001) Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. Working paper 274, National Bureau of Economic Research

    Google Scholar 

  • Broze L, Scaillet O, Zakoïan JM (1998) Quasi-indirect inference for diffusion processes. Econometric Theory 14:161–186

    Article  MathSciNet  Google Scholar 

  • Comte F, Genon-Catalot V, Rozenholc Y (2007) Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13:514–543

    Article  MathSciNet  MATH  Google Scholar 

  • Crank J, Nicolson E (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math Proc Camb Philos Soc 43:50–67

    Article  MathSciNet  MATH  Google Scholar 

  • Dacunha-Castelle D, Florens-Zmirou D (1986) Estimation of the coefficients of a diffusion from discrete observations. Stochastics 19:263–284

    Article  MathSciNet  MATH  Google Scholar 

  • Duffie D, Singleton K (1993) Simulated moments estimation of Markov models of asset prices. Econometrica 61:929–952

    Article  MathSciNet  MATH  Google Scholar 

  • Durham G, Gallant A (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes (with comments). J Bus Econom Stat 20:297–316

    Article  MathSciNet  Google Scholar 

  • Elerian O (1998) A note on the existence of a closed form conditional transition density for the Milstein scheme. Working paper, Nuffield College, University of Oxford

    Google Scholar 

  • Florens-Zmirou D (1989) Approximate dicrete-time schemes for statistics of diffusion processes. Statistics 20:547–557

    Article  MathSciNet  MATH  Google Scholar 

  • Florens-Zmirou D (1993) On estimating the diffusion coefficient from discrete observations. J Appl Probab 30:790–804

    Article  MathSciNet  MATH  Google Scholar 

  • Gallant A, Tauchen G (1996) Which moments to match? Econom Theory 12:657–681

    Article  MathSciNet  Google Scholar 

  • Gard T (1988) Introduction to stochastic differential equations. Monographs and textbooks in pure and applied mathematics, vol 114. M. Dekker, New York

    Google Scholar 

  • Gloter A, Jacod J (2001a) Diffusions with measurement errors. I. Local asymptotic normality. ESAIM Probab Stat 5:225–242

    Article  MathSciNet  MATH  Google Scholar 

  • Gloter A, Jacod J (2001b) Diffusions with measurement errors. II. Optimal estimators. ESAIM Probab Stat 5:243–260

    MathSciNet  MATH  Google Scholar 

  • Godambe V (1991) Estimating functions. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Gourieroux C, Monfort A, Renault E (1993) Indirect inference. J Appl Econom 8:85–118

    Article  Google Scholar 

  • Grimmett G, Stirzaker D (2001) Probability and random processes, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hansen L (1982) Large sample properties of generalized method of moments estimators. Econometrica 50:1029–1054

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen L, Scheinkman J (1995) Back to the future: Generating moment implications for continuous-time Markov processes. Econometrica 63:767–804

    Article  MathSciNet  MATH  Google Scholar 

  • Heyde C (1997) Quasi-likelihood and its application: a general approach to optimal parameter estimation. Springer, New York

    MATH  Google Scholar 

  • Honoré P (1997) Maximum likelihood estimation of non-linear continuous-time term-structure models. Aarhus School of Business, Aarhus

    Google Scholar 

  • Hurn A, Lindsay K, Martin V (2003) On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential equations. J Time Ser Anal 24:45–63

    Article  MathSciNet  MATH  Google Scholar 

  • Hurn A, Jeisman J, Lindsay K (2007) Seeing the wood for the trees: a critical evaluation of methods to estimate the parameters of stochastic differential equations. J Financ Econom 5:390–455

    Article  Google Scholar 

  • Iacus S (2008) Simulation and inference for stochastic differential equations. Springer series in statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Jacobsen M (2001) Discretely observed diffusions: classes of estimating functions and small δ-optimality. Scand J Stat 28:123–149

    Article  MathSciNet  MATH  Google Scholar 

  • Jacod J (2000) Non-parametric kernel estimation of the coefficient of a diffusion. Scand J Stat 27:83–96

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen B, Poulsen R (2002) Transition densities of diffusion processes: numerical comparison of approximation techniques. J Derivatives 9:18–32

    Article  Google Scholar 

  • Jiang G, Knight J (1997) A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model. Econometric Theory 13:615–645

    Article  MathSciNet  Google Scholar 

  • Jimenez J, Biscay R, Ozaki T (2006) Inference methods for discretely observed continuous-time stochastic volatility models: a commented overview. Asia Pac Financ Mark 12:109–141

    Article  Google Scholar 

  • Kendall M, Stuart A, Ord J (1987) Kendall’s advanced theory of statistics. Volume I: distribution theory, 5th edn. Charles Griffin, London

    Google Scholar 

  • Kent J (1978) Time-reversible diffusions. Adv Appl Probab 10:819–835

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler M (1997) Estimation of an ergodic diffusion from discrete observations. Scand J Stat 24:211–229

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler M (2000) Simple and explicit estimating functions for a discretely observed diffusion process. Scand J Stat 27:65–82

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler M, Paredes S (2002) Computational aspects related to martingale estimating functions for a discretely observed diffusion. Scand J Stat 29:425–440

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler M, Sørensen M (1999) Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5:299–314

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations, 3rd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kutoyants Y (2004) Statistical inference for ergodic diffusion processes. Springer series in statistics. Springer, London

    MATH  Google Scholar 

  • Le Breton A (1974) Parameter estimation in a linear stochastic differential equation. In: Transactions of the seventh Prague conference and of the European meeting of statisticians, Prague, pp 353–366

    Google Scholar 

  • Liptser R, Shiryayev A (1977) Statistics of random processes, vol 1. Springer, New York

    MATH  Google Scholar 

  • Liptser R, Shiryayev A (1978) Statistics of random processes, vol 2. Springer, New York

    MATH  Google Scholar 

  • Lo A (1988) Maximum likelihood estimation of generalized Itô processes with discretely sampled data. Econom Theory 4:231–247

    Article  Google Scholar 

  • Nelson D, Ramaswamy K (1990) Simple binomial processes as diffusion approximations in financial models. Rev Financ Stud 3:393–430

    Article  Google Scholar 

  • Nicolau J (2003) Bias reduction in nonparametric diffusion coefficient estimation. Econom Theory 19:754–777

    Article  MathSciNet  Google Scholar 

  • Nielsen J, Madsen H, Young P (2000) Parameter estimation in stochastic differential equations: an overview. Annu Rev Control 24:83–94

    Google Scholar 

  • Pedersen A (1995a) Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1:257–279

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen A (1995b) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand J Stat 22:55–71

    MATH  Google Scholar 

  • Polson N, Roberts G (1994) Bayes factors for discrete observations from diffusion processes. Biometrika 81:11–26

    Article  MathSciNet  MATH  Google Scholar 

  • Poulsen R (1999) Approximate maximum likelihood estimation of discretely observed diffuson processes. Working paper 29, Center for Analytical Finance, Aarhus

    Google Scholar 

  • Prakasa Rao B (1999) Statistical inference for diffusion type processes. Arnold, London

    MATH  Google Scholar 

  • Santa-Clara P (1995) Simulated likelihood estimation of diffusions with an application to the short term interest rate. Working paper, Anderson Graduate School of Management, UCLA

    Google Scholar 

  • Shoji I (1998) Approximation of continuous time stochastic processes by a local linearization method. Math Comp 67:287–298

    Article  MathSciNet  MATH  Google Scholar 

  • Shoji I, Ozaki T (1998a) Estimation for nonlinear stochastic differential equations by a local linearization method. Stoch Anal Appl 16:733–752

    Article  MathSciNet  MATH  Google Scholar 

  • Shoji I, Ozaki T (1998b) A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika 85:240–243

    Article  MathSciNet  MATH  Google Scholar 

  • Singer H (2004) Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models. In: The 6th international conference on social science methodology, Amsterdam

    Google Scholar 

  • Sørensen H (2001) Dicretely observed diffusions: approximation of the continuous-time score function. Scand J Stat 28:113–121

    Article  Google Scholar 

  • Sørensen H (2004) Parametric inference for diffusion processes observed at discrete points in time: a survey. Int Stat Rev 72:337–354

    Article  Google Scholar 

  • Sørensen M (2007) Efficient estimation for ergodic diffusions sampled at high frequency. Department of Economics and Business, Aarhus University. CREATES Research Paper No. 2007–46

    Google Scholar 

  • Sørensen M (2008) Parametric inference for discretely sampled stochastic differential equations. Department of Economics and Business, Aarhus University. CREATES Research Paper No 2008–18

    Google Scholar 

  • Soulier P (1998) Non parametric estimation of the diffusion coefficient of a diffusion process. Stoch Anal Appl 16:185–200

    Article  MathSciNet  MATH  Google Scholar 

  • Stramer O, Yan J (2007) Asymptotics of an efficient Monte Carlo estimation for the transition density of diffusion processes. Methodol Comput Appl Probab 9:483–496

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida N (1992) Estimation for diffusion processes from discrete observation. J Multivar Anal 41:220–242

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, C. (2013). Parametric Inference for Discretely-Observed Diffusions. In: Inference for Diffusion Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25969-2_6

Download citation

Publish with us

Policies and ethics