Skip to main content

Adaptive Wavelet Synthesis for Improving Digital Image Watermarking

  • Chapter
Towards Modern Collaborative Knowledge Sharing Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 401))

  • 650 Accesses

Abstract

Discrete Wavelet Transform is one of the most popular tools of digital signal processing. Many different wavelet functions have been proposed so far, however there is no wavelet that would be the most suitable for every task. Therefore a method allowing to adaptively synthesize the most suitable wavelet for a given task must be developed. In this paper a general outline of such method will be discussed. A concept of tools used for analysis of adaptive wavelets will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daubechies: Ten Lectures on Wavelets. SIAM (1992)

    Google Scholar 

  2. Mallat, S.: A wavelet tour of signal processing. Academic Press (December 2008)

    Google Scholar 

  3. Lipiński, P., Yatsymirskyy, M.: On synthesis of 4-tap and 6-tap reversible wavelet filters. Przegląd Elektrotechniczny (12), 284–286 (2008)

    Google Scholar 

  4. Regensburger, G.: Parametrizing compactly supported orthonormal wavelets by discrete moments. Applicable Algebra in Engineering, Communication and Computing 18(6), 583–601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Odegard, J.E., Burrus, C.S.: New class of wavelets for signal approxima-tion. In: IEEE International Symposium on Circuits and Systems (ISCAS) (May 1996)

    Google Scholar 

  6. Wei, D., Bovik, A.C., Evans, B.L.: Generalized coiflets: a new family of or-thonormal wavelets. In: Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, November 1997, vol. 2, pp. 1259–1263 (1997)

    Google Scholar 

  7. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Water-marking and Steganography, 1st edn. Elsevier (2008)

    Google Scholar 

  8. Stolarek, J., Lipiński, P.: Improving digital watermarking fidelity using fast neural network for adaptive wavelet synthesis. Journal of Applied Computer Science 18(1), 61–74 (2010)

    Google Scholar 

  9. Stolarek, J., Lipiński, P.: Digital watermarking enhancement using wavelet filter parametrization (submitted for publication)

    Google Scholar 

  10. Yatsymirskyy, M.: Lattice structures for synthesis and implementation of wavelet transforms. Journal of Applied Computer Science 17(1), 133–141 (2009)

    Google Scholar 

  11. Stolarek, J.: Adaptive synthesis of a wavelet transform using neural network. Bulletin of Polish Academy of Sciences, Technical Sciences 59(1) (March 2011)

    Google Scholar 

  12. Stasiak, B., Yatsymirskyy, M.: Fast Orthogonal Neural Networks. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 142–149. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kowalczuk, Z., Białaszewski, T.: Genetic algorithms in multi-objective optimisation of detection observers. In: Korbicz, J., Kościelny, J.M., Ko-walczuk, Z., Cholewa, W. (eds.) pp. 511–556. Springer (2004)

    Google Scholar 

  14. Dietl, W., Meerwald, P., Uhl, A.: Protection of wavelet-based watermark-ing systems using filter parametrization. Signal Processing 83(10), 2095–2116 (2003)

    Article  MATH  Google Scholar 

  15. Rieder, P., Gotze, J., Nossek, J.S., Burrus, C.S.: Parameterization of or-thogonal wavelet transforms and their implementation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45(2), 217–226 (1998)

    Article  Google Scholar 

  16. Vaidyanathan, P.P., Hoang, P.-Q.: Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks. IEEE Transactions on Acoustics, Speech and Signal Processing 36(1), 81–94 (1988)

    Article  Google Scholar 

  17. Stolarek, J.: On properties of a lattice structure for a wavelet filter bank implementation: Part I. Journal of Applied Computer Science 19(1) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stolarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Stolarek, J. (2012). Adaptive Wavelet Synthesis for Improving Digital Image Watermarking. In: Lipiński, P., Świrski, K. (eds) Towards Modern Collaborative Knowledge Sharing Systems. Studies in Computational Intelligence, vol 401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27446-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27446-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27445-9

  • Online ISBN: 978-3-642-27446-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics