Skip to main content

Modeling and Optical Characterization of the Localized Surface Plasmon Resonances of Tailored Metal Nanoparticles

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization

Abstract

Metal nanoparticles present peculiar optical properties at their surface plasmon resonances, such as marked optical absorption, enhanced near-field, and scattering to the far-field. From works involving the fabrication of tailor-made metal nanoparticles together with the accurate characterization of their optical response, it has been demonstrated that the plasmon-related optical features are sensitive to the size, shape, and environment of the nanoparticles. Such sensitivity is of particular interest for sensing applications and permits to tune the optical response of the nanoparticles, thus making them suitable for a wide range of applications in photonics. From a theoretical point of view, models and methods were developed in order to address the role of the previous structural parameters on the optical response of tailor-made nanoparticles. The aim of this chapter is to give insights into the plasmonic response of metal nanoparticles or nanocomposite materials built from them and into modern techniques and methods suitable for their fabrication and for the characterization and modeling of their optical response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonhardt U (2007) Optical metamaterials: invisibility cup. Nature Photonics 1:207

    Article  ADS  Google Scholar 

  2. Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil Trans Roy Soc Lon 147:145

    Article  Google Scholar 

  3. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 3:377

    Article  Google Scholar 

  4. Kreibig U, Zacharias P (1970) Surface plasma resonances in small spherical silver and gold particles. Z Phys 231:128

    Article  ADS  Google Scholar 

  5. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  6. Ziljstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410

    Article  ADS  Google Scholar 

  7. Huang X, El Sayed IH, Qian W, El Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region using gold nanorods. J Am Chem Soc 128:2115

    Article  Google Scholar 

  8. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  ADS  Google Scholar 

  9. Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308

    Article  ADS  Google Scholar 

  10. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569

    Article  ADS  Google Scholar 

  11. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  ADS  Google Scholar 

  12. Simonot L, Babonneau D, Camelio S, Lantiat D, Guérin P, Lamongie B, Antad V (2010) In-situ optical spectroscopy during deposition of Ag:Si3N4 nanocomposite films by magnetron sputtering. Thin Sol Films 518:2637

    Article  ADS  Google Scholar 

  13. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494

    Article  Google Scholar 

  14. Wu PC, Kim T-H, Brown AS, Losurdo M, Bruno G, Everitt HO (2007) Real-time resonance tuning of liquid Ga nanoparticles by in-situ spectroscopic ellipsometry. Appl Phys Lett 90:103119

    Article  ADS  Google Scholar 

  15. Langhammer C, Yuan Z, Zoric I, Kasemo B (2006) Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6:833

    Article  ADS  Google Scholar 

  16. Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721

    Article  Google Scholar 

  17. Chan GH, Zhao J, Schatz GC, Van Duyne RP (2008) Localized plasmon resonant spectroscopy of triangular aluminium nanoparticles. J Phys Chem C 112:13958

    Article  Google Scholar 

  18. Jiang XM, Ji Q, Ji LL, Chang A, Leung K (2003) Resolution improvement for maskless micro ion beam reduction lithography system. S Vac Sci Technol B 21:2724

    Article  Google Scholar 

  19. Bender M, Otto M, Hadam B, Vratzov B, Spangenberg B, Kurz H (2000) Fabrication of nanostructures using a UV-based imprint technique. Microtech Eng 53:233

    Article  Google Scholar 

  20. Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111

    Article  ADS  Google Scholar 

  21. Cerrina F (2000) X-ray imaging: applications to patterning and lithography. J Phys D Appl Phys 33:R103

    Article  ADS  Google Scholar 

  22. Xu Z, Yu W, Wang T, Zhang H, Fu Y, Lu H, Li F, Lu Z, Sun Q (2011) Plasmonic nanolithography: a review. Plasmonics 6:565

    Article  Google Scholar 

  23. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599

    Article  Google Scholar 

  24. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Comm 220:137

    Article  ADS  Google Scholar 

  25. Banaee MG, Crozier KB (2010) Gold nanorings as substrates for surface-enhanced Raman scattering. Opt Lett 35:760

    Article  ADS  Google Scholar 

  26. Grand J, Adam PM, Grimault AS, Vial A, Lamy de la Chapelle M, Bijeon JL, Kotscheev S, Royer P (2006) Optical extinction of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1:13

    Article  Google Scholar 

  27. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668

    Article  Google Scholar 

  28. Verellen N, Van Dorpe P, Vercruysse D, Vandenbosch GAE, Moschchalkov VV (2011) Dark and bright localized surface plasmons in nanocrosses. Opt Expr 19:11034

    Article  ADS  Google Scholar 

  29. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231

    Article  ADS  Google Scholar 

  30. Toudert J, Camelio S, Babonneau D, Denanot MF, Girardeau T, Espinos JP, Yubero F, Gonzalez Elipe AR (2006) Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3 N4 and BN layers. J Appl Phys 98:114316

    Article  ADS  Google Scholar 

  31. Ouacha H, Hendrich C, Hubenthal F, Träger F (2005) Laser-assisted growth of gold nanoparticles: shaping and optical characterization. Appl Phys B 81:663

    Article  ADS  Google Scholar 

  32. Wenzel T, Bosbach J, Goldmann A, Stietz F, Träger F (1999) Shaping nanoparticles and their optical spectra with photons. Appl Phys B 69:513

    Article  ADS  Google Scholar 

  33. Fort E, Ricolleau C, Sau Pueyo J (2003) Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates. Nano Lett 3:65

    Article  ADS  Google Scholar 

  34. Sánchez-Valencia JR, Toudert J, Boras A, López-Santos C, Barranco A, Feliu IO, Gonzalez-Elipe AR (2010) Tunable in-plane optical anisotropy of Ag nanoparticles deposited by DC sputtering onto SiO2 nanocolumnar thin films. Plasmonics 5:241

    Article  Google Scholar 

  35. Suzuki M, Maekita W, Wada Y, Nakayama K, Kimura K, Fukuoka T, Mori Y (2006) In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy. Appl Phys Lett 88:203121

    Article  ADS  Google Scholar 

  36. Sánchez-Valencia JR, Toudert J, Borras A, Barranco A, Lahoz R, de la Fuente GF, Frutos F, Gonzalez-Elipe AR (2011) Selective dichroic patterning by nanosecond laser treatment of Ag nanostripes. Adv Mater 24:848

    Article  Google Scholar 

  37. Lantiat D, Babonneau D, Camelio S, Pailloux F, Denanot MF (2007) Evidence for capping-layer effects on the morphology and plasmon excitation of Ag nanoparticles. J Appl Phys 102:113518

    Article  ADS  Google Scholar 

  38. Toudert J, Fernandez H, Babonneau D, Camelio S, Girardeau T, Solis J (2009) Linear and third-order nonlinear optical responses of multilayered Ag:Si3N4 nanocomposites. Nanotechnology 20:475705

    Article  ADS  Google Scholar 

  39. Camelio S, Babonneau D, Girardeau T, Toudert J, Lignou F, Denanot M-F, Maître N, Barranco A, Guérin P (2003) Optical and structural properties of Ag-Si3N4 nanocermets prepared by means of ion-beam sputtering in alternate and codeposition modes. Appl Opt 42:674

    Article  ADS  Google Scholar 

  40. Margueritat J, Gonzalo J, Afonso CN, Ortiz MI, Ballesteros C (2006) Production of self-aligned metal nanocolumns embedded in an oxide matrix film. Appl Phys Lett 88:093107

    Article  ADS  Google Scholar 

  41. Burgin J, Langot P, Arbouet A, Margueritat J, Gonzalo J, Afonso CN, Vallée F, Mlayah A, Rossell MD, Van Tendeloo G (2008) Acoustic vibration modes and electron-lattice coupling in self-assembled silver nanocolumns. Nano Lett 8:1296

    Article  ADS  Google Scholar 

  42. Perez A, Melinon P, Dupuis V, Jensen P, Prevel B, Tuaillon J, Bardotti L, Martet C, Treilleux M, Broyer M, Pellarin M, Vaille J-L, Palpant B, Lerme J (1997) Cluster assembled materials: a novel class of nanostructured solids with original structure and properties. J Phys D Appl Phys 30:709

    Article  ADS  Google Scholar 

  43. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870

    Article  Google Scholar 

  44. Sau TK, Rogach AL (2010) Non-spherical noble metal nanoparticles: colloidal-chemical synthesis and morphology control. Adv Mater 22:1781

    Article  Google Scholar 

  45. Rycenga M, Cobley CM, Zheng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669

    Article  Google Scholar 

  46. Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Comm 44:4580

    Article  Google Scholar 

  47. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of gold silica core-shell particles. Langmuir 12:4329

    Article  Google Scholar 

  48. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotech 6:268

    Article  ADS  Google Scholar 

  49. Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C, Kubota Y, Fujishima A (2003) Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mat 2:29

    Article  Google Scholar 

  50. Crespo-Monteiro N, Destouches N, Bois L, Chassagneux F, Reynaud S, Fournel T (2010) Reversible, and irreversible laser microinscription on silver-containing mesoporous titania films. Adv Mater 22:3166

    Article  Google Scholar 

  51. Muskens O, Christofilos D, Del Fatti N, Vallée F (2006) Optical response of a single noble metal nanoparticle. J Opt A Pure Appl Opt 8(4):S264–S272

    Article  ADS  Google Scholar 

  52. Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldman J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZ-H, Spatz JP, Möller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949

    Article  ADS  Google Scholar 

  53. Zijstra P, Orrit M (2011) Single metal nanoparticles: optical detection, spectroscopy and applications. Rep Prog Phys 74:106401

    Article  ADS  Google Scholar 

  54. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observation of strong interparticle interactions. J Phys Chem B 109:1079

    Article  Google Scholar 

  55. Wiederrecht GP (2004) Near-field optical imaging of noble metal nanoparticles. Eur Phys J Appl Phys 28:3

    Article  ADS  Google Scholar 

  56. Bouhelier A, Novotny L (2007) Near-field optical excitation and detection of surface plasmons; in surface plasmon nanophotonics. Springer, Berlin, p 139

    Book  Google Scholar 

  57. Okamoto H, Imura K (2009) Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures. Prog Surf Sci 84:199

    Article  ADS  Google Scholar 

  58. Hubert C, Rumyantseva A, Lerondel G, Grand J, Kotscheev S, Billot L, Vial A, Bachelot R, Royer P (2005) Near-field photochemical imaging of noble metal nanostructures. Nano Lett 5:615

    Article  ADS  Google Scholar 

  59. Ibn El Ahrach H, Bachelot R, Vial A, Lérondel G, Plain J, Royer P, Soppera O (2007) Spectral degeneracy breaking of the plasmon resonances of single metal nanoparticles by nanoscale near-field photopolymerisation. Phys Rev Lett 98:107402

    Article  ADS  Google Scholar 

  60. Plech A, Leiderer P, Bonneberg J (2009) Femtosecond laser near field ablation. Laser Photon Rev 3:435

    Article  Google Scholar 

  61. Bosman M, Keast VJ, Watanabe M, Maaroof AI, Cortie MB (2007) Mapping surface plasmon at the nanometre scale with an electron beam. Nanotechnology 18:165505

    Article  ADS  Google Scholar 

  62. Nelayah J, Kociak M, Stéphan O, Garcia de Abajo FJ, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nature 3:349

    Google Scholar 

  63. Chu MW, Myroshnychenko V, Chen CH, Deng JP, Mou CY, Garcia de Abajo FJ (2009) Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 9:399

    Article  ADS  Google Scholar 

  64. Chaturvedi P, Hsu KH, Kumar A, Fung KH, Mabon JC, Fang NX (2009) Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. ACS Nano 3:2965

    Article  Google Scholar 

  65. Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, DohcevicMitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O (2009) Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J Nanopart Res 11:1521

    Article  Google Scholar 

  66. Woormeester H, Kooij ES, Poelsema B (2003) Unambiguous optical characterization of nanocolloidal gold films. Phys Rev B 68:085406

    Article  ADS  Google Scholar 

  67. Oates TWH, Ranjan M, Facsko S, Arwin H (2011) Highly anisotropic effective dielectric functions of silver nanoparticle arrays. Opt Expr 19:2014

    Article  ADS  Google Scholar 

  68. Bohren CE, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley-VCH, Weinheim

    Google Scholar 

  69. Palik ED (1997) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  70. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357

    Article  ADS  Google Scholar 

  71. Bi H, Cai W, Kan C, Zhang L, Martin D, Träger F (2002) Optical study of redox processes of Ag nanoparticles at high temperatures. J Appl Phys 92:7491

    Article  ADS  Google Scholar 

  72. Kim B, Park C-S, Muruyama M, Hochella MF Jr (2010) Discovery and characterization of silver sulphide nanoparticles in sewage sludge products. Environ Sci Technol 44:7509

    Article  Google Scholar 

  73. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178

    Article  ADS  Google Scholar 

  74. Kreibig U, Bour G, Hilger A, Gartz M (1999) Optical properties of cluster matter: influence of interfaces. Phys Stat Sol A 175:351

    Article  ADS  Google Scholar 

  75. Kraus WA, Schatz GC (1983) Plasmon resonant broadening in small metal particles. J Chem Phys 79:6130

    Article  ADS  Google Scholar 

  76. Coronado E, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926

    Article  ADS  Google Scholar 

  77. Cai W, Hofmeister H, Dubiel M (2001) Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur Phys J D 13:245

    Article  ADS  Google Scholar 

  78. Stockman M (2011) Nanoplasmonics: the physics behind the applications. Physics Today 64:38

    Article  Google Scholar 

  79. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073

    Article  Google Scholar 

  80. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152

    Article  Google Scholar 

  81. Muskens OL, Bachelier G, Del Fatti N, Vallée F, Brioude A, Jiang X, Pileni M-P (2008) Quantitative absorption spectroscopy of a single gold nanorod. J Phys Chem C 112:8917

    Article  Google Scholar 

  82. Toudert J, Babonneau D, Camelio S, Girardeau T, Yubero F, Espinós JP, Gonzalez-Elipe AR (2007) Using ion beams to tune the nanostructure and optical response of co-deposited Ag:BN thin films. J Phys D Appl Phys 40:4614

    Article  ADS  Google Scholar 

  83. Margueritat J, Gonzalo J, Afonso CN, Mlayah A, Murray DB, Saviot L (2006) Surface plasmons and vibrations of self-assembled silver nanocolumns. Nano Lett 6:2037

    Article  ADS  Google Scholar 

  84. Barber PW, Chang RK, Massoudi H (1983) Electrodynamic calculation of the surface-enhanced electric intensities on large Ag spheroids. Phys Rev B 27(12):7251

    Article  ADS  Google Scholar 

  85. Jersch J, Demming F, Hildenhagen LJ, Dickmann K (1998) Field enhancement of optical radiation in the nearfield of scanning microscope tips. Appl Phys A 66:29

    Article  ADS  Google Scholar 

  86. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824

    Article  ADS  Google Scholar 

  87. Wu D, Xu X, Liu X (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Sol State Comm 148:163

    Article  ADS  Google Scholar 

  88. Khlebtsov B, Melnikov A, Zharov V, Klebtsov N (2006) Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches. Nanotechnology 17:1437

    Article  ADS  Google Scholar 

  89. Gluodenis M, Foss CA Jr (2002) The effect of mutual orientation on the spectra of metal nanoparticle rod-rod and rod-sphere pairs. J Phys Chem B 106:9484

    Article  Google Scholar 

  90. Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrate matters: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9:2188

    Article  ADS  Google Scholar 

  91. Pinchuk A, Hilger A, von Plessen G, Kreibig U (2004) Substrate effect on the optical response of nanoparticles. Nanotechnology 15:1890

    Article  ADS  Google Scholar 

  92. Pinchuk A, Schatz G (2005) Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate. Nanotechnology 16:2209

    Article  ADS  Google Scholar 

  93. Fuchs R (1975) Theory of the optical properties of small ionic crystal cubes. Phys Rev B 11:1732

    Article  ADS  Google Scholar 

  94. Pecharromán C, Pérez-Juste J, Mata-Osoro G, Liz-Marzán LM, Mulvaney P (2008) Redshift of surface plasmon modes of small rods due to their atomic roughness and end-cap geometry. Phys Rev B 77:035418

    Article  ADS  Google Scholar 

  95. Davis TJ, Gómez DE, Vernon KC (2010) Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett 10:2618

    Article  ADS  Google Scholar 

  96. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Phil Trans R Soc Lond 203:385

    Article  ADS  Google Scholar 

  97. Theiss W (1993) The use of effective medium theories in optical spectroscopy. Adv Sol State Phys 33:149

    Article  Google Scholar 

  98. Venger EF, Goncharenko AV, Dmitruk ML (1999) Optics of small particles and disperse media. Naukova Dumka, Kyiv

    Google Scholar 

  99. Azzam RMA, Bashara NM (1999) Ellipsometry and polarized light. Elsevier, North Holland

    Google Scholar 

  100. Ung T, Liz-Marzán LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441

    Article  Google Scholar 

  101. Levy O, Stroud D (1997) Maxwell-Garnett theory for mixtures of anisotropic inclusions: Applications for conducting polymers. Phys Rev B 56:13

    Article  Google Scholar 

  102. Goncharenko AV, Lozvski VZ, Venger EF (2001) Effective dielectric response of a shape distributed system. J Phys Condens Matter 13:8217

    Article  ADS  Google Scholar 

  103. Gilliot M, En Naciri A, Johann L, Stoquert JP, Grob JJ, Muller D (2007) Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry. Phys Rev B 76:045424

    Google Scholar 

  104. Galeener FL (1971) Submicroscopic-void resonance: the effect of internal roughness on optical absorption. Phys Rev Lett 27:421

    Article  ADS  Google Scholar 

  105. Barrera RG, Giraldo J, Mochán WL (1993) Effective dielectric response of a composite with aligned spheroidal inclusions. Phys Rev B 47:14

    Article  Google Scholar 

  106. Hornyak GL, Patrissi CJ, Martin CR (1997) Fabrication, characterization, and optical properties of gold nanoparticles/porous alumina composites: the non-scattering Maxwell-Garnett limit. J Phys Chem B 101:1548

    Article  Google Scholar 

  107. Dakka A, Lafait J, Sella C, Berthier S, Abd-Lefdil M, Martin JC, Maaza M (2000) Optical properties of Ag-TiO2 nanocermet films prepared by cosputtering and multilayer deposition techniques. Appl Opt 39:2745

    Article  ADS  Google Scholar 

  108. Atkinson R, Hendren WR, Wurtz GA, Dickson W, Zayats AV, Evans P, Pollard RJ (2006) Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys Rev B 73:235402

    Article  ADS  Google Scholar 

  109. Yamaguchi T, Yoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated thin silver films. Thin Sol Films 21:173

    Article  ADS  Google Scholar 

  110. Dalacu D, Martinu L (2001) Optical properties of discontinuous gold films: finite-size effects. J Opt Soc Am B 18:85

    Article  ADS  Google Scholar 

  111. Fedotov VA, Emel’yanov VI, MacDonald KF, Zheludev NI (2004) Optical properties of closely packed nanoparticle films: spheroids and nanoshells. J Opt A Pure Appl Opt 6:155

    Article  ADS  Google Scholar 

  112. Hilger A, Cüppers N, Tenfelde M, Kreibig U (2000) Surface and interface effects in the optical properties of silver nanoparticles. Eur Phys J D 10:115

    Article  ADS  Google Scholar 

  113. Hilger A, Tenfelde M, Kreibig U (2001) Silver nanoparticles deposited on dielectric surfaces. Appl Phys B 73:361

    Article  ADS  Google Scholar 

  114. Wenzel T, Bosbach J, Stietz F, Träger F (1999) In-situ determination of the shape of supported silver clusters during growth. Surf Sci 432:257

    Article  ADS  Google Scholar 

  115. Babonneau D, Lantiat D, Camelio S, Toudert J, Simonot L, Pailloux F, Denanot M-F, Girardeau T (2008) Gold and silver nanoparticles embedded in dielectric-capping layers studied by HAADF-STEM. EPJ Appl Phys 44:3

    Article  ADS  Google Scholar 

  116. Yoshida S, Yamaguchi T, Kinbara A (1971) Optical properties of aggregated silver films. J Opt Soc Am 61:62

    Article  ADS  Google Scholar 

  117. Toudert J, Babonneau D, Simonot L, Babonneau D, Camelio S, Girardeau T (2008) Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization. Nanotechnology 19(12):125709

    Article  ADS  Google Scholar 

  118. Camelio S, Babonneau D, Lantiat D, Simonot L, Pailloux F (2009) Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy erosion. Phys Rev B 80:155434

    Article  ADS  Google Scholar 

  119. Maier SA, Brongersma ML, Kik PG, Atwater HA (2002) Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65:193408

    Article  ADS  Google Scholar 

  120. Valamanesh M, Borensztein Y, Langlois C, Lacaze E (2010) Substrate effect on the plasmon resonance of supported flat silver nanoparticles. J Phys Chem C 115:2914

    Article  Google Scholar 

  121. Bergman DJ (1979) Dielectric constant for a two-component granular composite: a practical scheme for calculating the pole spectrum. Phys Rev B 19:2359

    Article  ADS  Google Scholar 

  122. Tuncer E (2005) Extracting the spectral density function for a binary composite without a priori assumptions. Phys Rev B 71:012101

    Article  ADS  Google Scholar 

  123. Fu L, Resca L (1994) Electrical response of heterogeneous systems with inclusions of arbitrary structure. Phys Rev B 49:6625

    Article  ADS  Google Scholar 

  124. Fu L, Macedo PB, Resca L (1993) Analytical approach to the interfacial polarization of heterogeneous systems. Phys Rev B 47:13818

    Article  ADS  Google Scholar 

  125. Bedeaux D, Vlieger J (1973) A phenomenological theory of the dielectric properties of thin films. Physica 67:55

    Article  ADS  Google Scholar 

  126. Vlieger J, Bedeaux D (1980) A statistical theory for the dielectric properties of thin island films. Physica 69:107

    MathSciNet  Google Scholar 

  127. Bedeaux D, Vlieger J (1983) A statistical theory for the dielectric properties of thin island films: application and comparison with experimental results. Thin Sol Films 102:265

    Article  ADS  Google Scholar 

  128. Wind MM, Vlieger J, Bedeaux D (1987) The polarizability of a truncated sphere on a substrate I. Physica A 141:33

    Article  ADS  Google Scholar 

  129. Lazzari R, Simonsen I, Bedeaux D, Vlieger J, Jupille J (2001) Polarizability of truncated spheroidal particles supported by a substrate: model and applications. Eur Phys J B 24:267

    Article  ADS  Google Scholar 

  130. Jackson JD (1975) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  131. Flores-Camacho JM, Sun LD, Saucedo-Zeni N, Weidlinger G, Johage M, Zeppenfeld P (2008) Optical anisotropies of metal clusters supported on a birefringent substrate. Phys Rev B 78:075416

    Article  ADS  Google Scholar 

  132. Harmaans MT, Bedeaux D (1993) The polarizability and the optical properties of lattices and random distributions of small metal spheres on a substrate. Thin Sol Films 224:117

    Article  ADS  Google Scholar 

  133. Simonsen I, Lazzari R, Jupille J, Roux S (2000) Numerical modelling of the optical response of supported metal particles. Phys Rev B 61:7722

    Article  ADS  Google Scholar 

  134. Lazzari R, Simonsen I (2002) Granfilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients. Thin Solid Films 419:124

    Article  ADS  Google Scholar 

  135. Lazzari R, Renaud G, Revenant C, Jupille J, Borensztein Y (2006) Adhesion of growing nanoparticles at a glance: surface differential spectroscopy and grazing incidence small angle x-ray scattering. Phys Rev B 79:125428

    Article  ADS  Google Scholar 

  136. Lazzari R, Roux S, Simonsen I, Jupille J, Bedeaux D, Vlieger J (2002) Multipolar plasmon resonances in supported silver particles: the case of Ag/α-Al2O3 (0001). Phys Rev B 65:235424

    Article  ADS  Google Scholar 

  137. Kooij ES, Ahmed W, Zandvliet HJW, Poelsema B (2011) Localized plasmons in noble metal nanospheroids. J Phys Chem C 115:10321

    Article  Google Scholar 

  138. Messinger BJ, von Raben KU, Chang RK, Barber PW (1981) Local fields at the surface of noble-metal microspheres. Phys Rev B 24:649

    Article  ADS  Google Scholar 

  139. Myroschnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, LizMarzán LM, Garcia de Abajo FJ (2009) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792

    Article  Google Scholar 

  140. Meier M, Wokaun A (1983) Enhanced fields on large metal particles: dynamic depolarization. Opt Lett 8:581

    Article  ADS  Google Scholar 

  141. Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48:957

    Article  ADS  Google Scholar 

  142. Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering and absorption cross-sections. J Phys Chem B 108:13957

    Article  Google Scholar 

  143. Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10:295

    Article  Google Scholar 

  144. Hu L, Chen X, Chen G (2008) Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics. J Comp Theo Nanosci 5:2096

    Article  MathSciNet  Google Scholar 

  145. Asano S, Yamamoto G (1975) Light scattering by a spheroidal particle. Appl Opt 14:29

    ADS  Google Scholar 

  146. Ghosh SK, Pal T (2007) Interparticle coupling effects on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797

    Article  Google Scholar 

  147. www.scattport.org

  148. Mischenko MI, Travis LD, Mackowski DW (1999) T-matrix computations of light scattering by non-spherical particles: a review. J Quant Spectrosc Radiat Transfer 55:535

    Article  ADS  Google Scholar 

  149. Mischenko MI, Videen G, Babenko VA, Khlebtsov NG, Wriedt T (2004) T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J Quant Spectrosc Radiat Transfer 88:357

    Google Scholar 

  150. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491

    Article  ADS  Google Scholar 

  151. Grosges T, Vial A, Barchiesi D (2005) Models of near-field spectroscopic studies: comparison between finite-element and finite-difference methods. Opt Expr 13:8483

    Article  ADS  Google Scholar 

  152. Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Ant Propag 14:302

    ADS  MATH  Google Scholar 

  153. Garcia de Abajo FJ, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B 65:115418

    Article  ADS  Google Scholar 

  154. Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710

    Article  Google Scholar 

  155. Barnes WL (2009) Comparing experiments and theory in plasmonics. J Opt A Pure Appl Opt 11:114002

    Article  ADS  Google Scholar 

  156. Karamehmedovic M, Schuh R, Schmidt V, Wriedt T, Matyssek C, Hergert W, Stalmashonak A, Seifert G, Stranik O (2011) Comparison of numerical methods in near-field computation for metallic nanoparticles. Opt Expr 19:8939

    Article  Google Scholar 

  157. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3:2776

    Article  Google Scholar 

  158. Zeman EJ, Schatz GC (1987) An accurate electromagnetic theory study enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In Zn and Cd. J Phys Chem 91:634

    Article  Google Scholar 

  159. Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl Phys Lett 83:4625

    Article  ADS  Google Scholar 

  160. Moroz A (2009) Depolarization field of spheroidal particles. J Opt Soc Am B 26:517

    Article  MathSciNet  ADS  Google Scholar 

  161. Golovan LA, Zabotnov SV, Timoshenko VY, Kashkarov PK (2009) Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors. Semiconductors 43:218

    Article  ADS  Google Scholar 

  162. Lee K-S, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109:20331

    Article  Google Scholar 

  163. Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8:3349

    Article  Google Scholar 

  164. Khlebtsov BN, Khlebtsov NG (2007) Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment. J Phys Chem C 111:11516

    Article  Google Scholar 

  165. Jain PK, Lee K-S, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different sizes, shape and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238

    Article  Google Scholar 

  166. Bryant GW, Garcia de Abajo FJ, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8:631

    Article  ADS  Google Scholar 

  167. Encina ER, Coronado EA (2007) Resonance conditions for multipole plasmon excitations in noble metal nanorods. J Phys Chem C 111:16796

    Article  Google Scholar 

  168. Encina ER, Coronado EA (2008) Plasmonic nanoantennas: angular scattering properties of multipole resonances in noble metal nanorods. J Phys Chem C 112:9586

    Article  Google Scholar 

  169. Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138

    Article  Google Scholar 

  170. Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) Multipole plasmon resonances in gold nanorods. J Phys Chem B 110:2150

    Article  Google Scholar 

  171. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    Article  ADS  Google Scholar 

  172. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233

    Article  Google Scholar 

  173. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806

    Article  Google Scholar 

  174. Rodríguez-Fernández J, Novo C, Myroshnychenko V, Funston AM, Sánchez-Iglesias A, Pastoriza-Santos J, Pérez-Juste J, Garcia de Abajo FJ, Liz-Marzán LM, Mulvaney P (2009) Spectroscopy, imaging and modelling of individual gold decahedra. J Phys Chem C 113:18623

    Article  Google Scholar 

  175. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034

    Article  ADS  Google Scholar 

  176. Hao E, Bailey RC, Schatz GC, Hupp JT, Li S (2004) Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett 4:327

    Article  ADS  Google Scholar 

  177. Romero I, Aizpurua J, Bryant GW, Garcia de Abajo FJ (2006) Plasmon in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Expr 14:9988

    Article  ADS  Google Scholar 

  178. Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, García de Abajo FJ (2003) Optical properties of gold nanorings. Phys Rev Lett 90:057401

    Article  ADS  Google Scholar 

  179. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854

    Article  ADS  Google Scholar 

  180. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827

    Article  ADS  Google Scholar 

  181. Hooshmand N, Jain PK, El-Sayed MA (2011) Plasmonic spheroidal metal nanoshells showing larger tunability than their spherical counterparts: an effect of enhanced plasmon coupling. J Phys Chem Lett 2:374

    Article  Google Scholar 

  182. Mertz J (2000) Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description. J Opt Soc Am A 17:1906

    Article  Google Scholar 

  183. Schmid M, Klenk R, Lux-Steiner MC, Topic M, Krc J (2011) Modeling plasmonic scattering combined with thin-film optics. Nanotechnology 22:025204

    Article  ADS  Google Scholar 

  184. Pillai S, Catchpole KR, Trupke T, Greene MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  ADS  Google Scholar 

  185. Videen G (1991) Light scattering from a sphere on or near a surface. J Opt Soc Am A 8:483

    Article  ADS  Google Scholar 

  186. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  ADS  Google Scholar 

  187. Beck FJ, Polman A, Catchpole KR (2009) J Appl Phys 105:114310

    Article  ADS  Google Scholar 

  188. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Expr 16:21793

    Article  ADS  Google Scholar 

  189. Vial A, Laroche T (2007) Description of dispersion properties of metal by means of the critical points model and application to the study of resonant structures using the FDTD method. J Phys D Appl Phys 40:7152

    Article  ADS  Google Scholar 

  190. Dahmen C, Schmidt B, von Plessen G (2007) Radiation damping in metal nanoparticle pairs. Nano Lett 7:318

    Article  ADS  Google Scholar 

  191. Zhao LL, Lance Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343

    Article  Google Scholar 

  192. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337

    Article  Google Scholar 

  193. Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120:10871

    Article  ADS  Google Scholar 

  194. Auguié B, Barnes WL (2008) Collective resonances of gold nanoparticle arrays. Phys Rev Lett 101:1439021

    Article  Google Scholar 

  195. Auguié B, Bendaña XM, Barnes WL, Garcia de Abajo FJ (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82:155447

    Article  ADS  Google Scholar 

  196. Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP (2005) Controlling plasmon line shapes trough diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5:1065

    Article  ADS  Google Scholar 

  197. Zou S, Schatz GC (2006) Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths. Nanotechnology 17:2813

    Article  ADS  Google Scholar 

  198. Ruppin R (1982) Surface modes of two spheres. Phys Rev B 26:3441

    Article  ADS  Google Scholar 

  199. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246

    Article  ADS  Google Scholar 

  200. Grésillon S, Aigouy L, Boccara AC, Rivoal JC, Quelin X, Desmarest C, Gadenne P, Shubin VA, Sarychev AK, Shalaev VM (1999) Experimental observation of localized optical excitations in random metal-dielectric film. Phys Rev Lett 82:4520

    Article  ADS  Google Scholar 

  201. Del Coso R, Requejo-Isidro J, Solis J, Gonzalo J, Afonso CN (2004) Third order nonlinear susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold. J Appl Phys 95:2755

    Article  ADS  Google Scholar 

  202. Tamaru H, Kuwata H, Miyazaki HT, Miyano K (2002) Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 80:1826

    Article  ADS  Google Scholar 

  203. Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances on nanogold particles. Nano Lett 3:1087

    Article  ADS  Google Scholar 

  204. Atay T, Song J-H, Nurmikko A (2004) Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett 4:1627

    Article  ADS  Google Scholar 

  205. Marhaba S, Bachelier G, Bonnet C, Broyer M, Cottancin E, Grillet N, Lermé J, Vialle J-L, Pellarin M (2009) Surface plasmon resonance of gold nanodimers near the conductive contact limit. J Phys Chem C 113:4349

    Article  Google Scholar 

  206. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899

    Article  ADS  Google Scholar 

  207. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4:819

    Article  Google Scholar 

  208. Willingham B, Brandt DW, Nordlander P (2008) Plasmon hybridization in nanorods dimers. Appl Phys B 93:209

    Article  ADS  Google Scholar 

  209. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419

    Article  ADS  Google Scholar 

  210. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444

    Article  ADS  Google Scholar 

  211. Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4:2209

    Article  ADS  Google Scholar 

  212. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913

    Article  Google Scholar 

  213. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243

    Article  Google Scholar 

  214. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651

    Article  ADS  Google Scholar 

  215. Shao L, Woo KC, Chen H, Wang J, Lin H-Q (2010) Angle- and energy-resolved plasmon coupling in gold nanorods dimers. ACS Nano 4:3053

    Article  Google Scholar 

  216. Slaughter LS, Wu Y, Willingham BA, Nordlander P, Link S (2010) Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorods dimers. ACS Nano 4:4657

    Article  Google Scholar 

  217. Marty R, Arbouet A, Girard C, Margueritat J, Gonzalo J, Afonso CN (2007) Sculpting nanometer-sized landscape with plasmonic nanocolumns. J Chem Phys 131:224707

    Article  ADS  Google Scholar 

  218. Jain PK, El-Sayed MA (2008) Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers. J Phys Chem C 112:4954

    Article  Google Scholar 

  219. Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behaviour of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080

    Article  ADS  Google Scholar 

  220. Dridi M, Vial A (2011) Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pairs. Plasmonics Published online

    Google Scholar 

  221. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257

    Article  ADS  Google Scholar 

  222. Luk’Yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonances in plasmonic nanostructures and metamaterials. Nature Mat 9:707

    Article  ADS  Google Scholar 

  223. Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2012) Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett 12:1058

    Article  ADS  Google Scholar 

  224. Rahmani M, Lei DY, Giannini V, Lukiyanchuk B, Ranjbar M, Liew TYF, Hong M, Maier SA (2012) Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett 12:2101

    Article  ADS  Google Scholar 

  225. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69

    Article  ADS  Google Scholar 

  226. Wen F, Ye J, Liu N, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles. Nano Lett 12(9):5020–5026

    Article  ADS  Google Scholar 

  227. Palpant B (2006) Third order nonlinear optical response of metal nanoparticles, in nonlinear optical properties of matter. Springer, Dordrecht

    Google Scholar 

  228. Canfield BK, Husu H, Laukkanen J, Bai B, Kuittinen M, Turunen J, Kauranen M (2007) Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. Nano Lett 7:1251

    Article  ADS  Google Scholar 

  229. Del Fatti N, Vallée F, Flytzanis C, Hamanaka Y, Nakamura A (2000) Electron dynamics and surface plasmon resonance non-linearities in metal nanoparticles. Chem Phys 251:215

    Article  Google Scholar 

  230. Link S, El Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410

    Article  Google Scholar 

  231. Lamprecht B, Leitner A, Aussenegg FR (1999) SHG studies of plasmon dephasing in nanoparticles. Appl Phys B 68:419

    Article  ADS  Google Scholar 

  232. Palpant B, Portales H, Saviot L, Lermé J, Prevel B, Pellarin M, Duval E, Perez A, Broyer M (1999) Quadrupolar vibrational mode of silver clusters from plasmon-assisted Raman scattering. Phys Rev B 60:17107

    Article  ADS  Google Scholar 

  233. García de Abajo FJ (2008) Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 112:17983

    Article  Google Scholar 

  234. McMahon JM, Gray SK, Schatz GC (2010) Calculating nonlocal optical properties of structures with arbitrary shape. Phys Rev B 82:035423

    Article  ADS  Google Scholar 

  235. Morton SM, Silverstein DW, Jensen L (2011) Theoretical studies of plasmonics using electronic structure methods. Chem Rev 111:3962

    Article  Google Scholar 

  236. Palpant B, Prével B, Lermé J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M (1998) Optical properties of gold clusters in the size range 2-4 nm. Phys Rev B 57:1963

    Article  ADS  Google Scholar 

  237. Prodan E, Nordlander P, Halas NJ (2003) Electronic structure and optical properties of gold nanoshells. Nano Lett 3:1411

    Article  ADS  Google Scholar 

  238. Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4:5269

    Article  Google Scholar 

  239. Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 9:887

    Article  ADS  Google Scholar 

  240. Blaber MG, Arnold MD, Ford MJ (2010) A review of the optical properties of alloys and intermetallics for plasmonics. J Phys Condens Matter 22:143201

    Article  ADS  Google Scholar 

  241. Blaber MG, Arnold MD, Ford MJ (2010) Designing materials for plasmonic systems: the alkali-noble intermetallics. J Phys Condens Matter 22:095501

    Article  ADS  Google Scholar 

  242. Zoric I, Zach M, Kasemo B, Langhammer C (2011) Gold, platinum and aluminium nanodisk plasmons: material independence, subradiance and damping mechanisms. ACS Nano 5:2535

    Article  Google Scholar 

  243. Pakizeh T, Langhammer C, Zoric I, Apell P, Käll M (2009) Intrinsic Fano interference of localized plasmons in Pd nanoparticles. Nano Lett 9:882

    Article  ADS  Google Scholar 

  244. Cortie MB, Mc Donagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713

    Article  Google Scholar 

  245. Bachelier G, Russier-Antoine I, Jonin C, Del Fatti N, Vallée F, Brevet PF (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401

    Article  ADS  Google Scholar 

  246. Chen F, Alemu N, Johnston RL (2011) Collective plasmon modes in a compositionally asymmetric nanoparticle dimer. AIP Adv 1:032134

    Article  ADS  Google Scholar 

  247. Peña-Rodriguez O, Pal U, Campoy-Quiles M, Rodríguez-Fernández L, Garriga M, Alonso MI (2011) Enhanced Fano resonances in asymmetrical Au:Ag heterodimers. J Phys Chem C 115:6410

    Article  Google Scholar 

  248. Antosiewicz T, Apell SP, Wadell C, Langhammer C (2012) Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches. J Phys Chem C 116:20522

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Toudert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toudert, J. (2013). Modeling and Optical Characterization of the Localized Surface Plasmon Resonances of Tailored Metal Nanoparticles. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics