Skip to main content

Targeting Conserved Pathways as a Strategy for Novel Drug Development: Disabling the Cellular Stress Response

  • Chapter
  • First Online:
Drug Discovery in Africa

Abstract

The ability to respond to and cope with stress at a molecular level is essential for cell survival. The stress response is conserved across organisms by the expression of a group of molecular chaperones known as heat shock proteins (HSP). HSP are ubiquitous and highly conserved proteins that regulate cellular protein homeostasis and trafficking under physiological and stressful conditions, including diseases such as cancer and malaria. HSP are good drug targets for the treatment of human diseases, as the significant functional and structural data available suggest that they are essential for cell survival and that, despite conservation across species, there are biophysical and biochemical differences between HSP in normal and disease states that allow HSP to be selectively targeted. In this chapter, we review the international status of this area of research and highlight progress by us and other African researchers towards the characterisation and targeting of HSP from humans and parasites from Plasmodium and Trypanosoma as drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(96):223–230

    Article  CAS  Google Scholar 

  2. Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  CAS  Google Scholar 

  3. Ritossa FM, Vonborstel RC (1964) Chromosome puffs in Drosophila induced by ribonuclease. Science 145:513–514

    Article  CAS  Google Scholar 

  4. Li Z, Srivastava P (2004) Heat-shock proteins. Curr Protoc Immunol Appendix 1:Appendix 1T

    Google Scholar 

  5. Morimoto RI, Kline MP et al (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    CAS  Google Scholar 

  6. Dudek J, Benedix J et al (2009) Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci 66(9):1556–1569

    Article  CAS  Google Scholar 

  7. Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60(1):10–18

    Article  CAS  Google Scholar 

  8. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79(2):425–449

    CAS  Google Scholar 

  9. Park HO, Craig EA (1991) Transcriptional regulation of a yeast HSP70 gene by heat shock factor and an upstream repression site-binding factor. Genes Dev 5(7):1299–1308

    Article  CAS  Google Scholar 

  10. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  CAS  Google Scholar 

  11. Csermely P, Schnaider T et al (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79(2):129–168

    Article  CAS  Google Scholar 

  12. Krone PH, Sass JB (1994) HSP 90 alpha and HSP 90 beta genes are present in the zebrafish and are differentially regulated in developing embryos. Biochem Biophys Res Commun 204(2):746–752

    Article  CAS  Google Scholar 

  13. Terasawa K, Minami M, Minami Y (2005) Constantly updated knowledge of Hsp90. J Biochem 137(4):443–447

    Article  CAS  Google Scholar 

  14. Shonhai A, Maier AG et al (2011) Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis. Protein Pept Lett 18(2):143–157

    Article  CAS  Google Scholar 

  15. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156

    Article  CAS  Google Scholar 

  16. Rao R, Fiskus W et al (2008) HDAC6 inhibition enhances 17-AAG–mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112(5):1886–1893

    Article  CAS  Google Scholar 

  17. Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15(11):565–567

    Article  CAS  Google Scholar 

  18. Yang Y, Rao R et al (2008) Role of acetylation and extracellular location of heat shock protein 90α in tumor cell invasion. Cancer Res 68(12):4833–4842

    Article  CAS  Google Scholar 

  19. Martinez-Ruiz A, Villanueva L et al (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci USA 102(24):8525–8530

    Article  CAS  Google Scholar 

  20. Duval M, Le Boeuf F et al (2007) Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18(11):4659–4668

    Article  CAS  Google Scholar 

  21. Nemoto T, Sato N (1998) Oligomeric forms of the 90-kDa heat shock protein. Biochem J 330(2):989–995

    CAS  Google Scholar 

  22. Nemoto T, Sato N et al (1997) Domain structures and immunogenic regions of the 90-kDa heat-shock protein (HSP90). Probing with a library of anti-HSP90 monoclonal antibodies and limited proteolysis. J Biol Chem 272(42):26179–26187

    Article  CAS  Google Scholar 

  23. Hainzl O, Lapina MC et al (2009) The charged linker region is an important regulator of Hsp90 function. J Biol Chem 284(34):22559–22567

    Article  CAS  Google Scholar 

  24. Scheibel T, Siegmund HI et al (1999) The charged region of Hsp90 modulates the function of the N-terminal domain. Proc Natl Acad Sci USA 96(4):1297–1302

    Article  CAS  Google Scholar 

  25. Prodromou C, Roe SM et al (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90(1):65–75

    Article  CAS  Google Scholar 

  26. Grenert JP, Sullivan WP et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272(38):23843–23850

    Article  CAS  Google Scholar 

  27. Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2:30

    Article  Google Scholar 

  28. Graefe SE, Wiesgigl M et al (2002) Inhibition of HSP90 in Trypanosoma cruzi induces a stress response but no stage differentiation. Eukaryot Cell 1(6):936–943

    Article  CAS  Google Scholar 

  29. Wayne N, Bolon DN (2007) Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers. J Biol Chem 282(48):35386–35395

    Article  CAS  Google Scholar 

  30. Brinker A, Scheufler C et al (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. J Biol Chem 277(22):19265–19275

    Article  CAS  Google Scholar 

  31. Odunuga OO, Hornby JA et al (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J Biol Chem 278(9):6896–6904

    Article  CAS  Google Scholar 

  32. Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the Cryo-EM structure of the human Hsp90:Hop complex. Mol Cell 42(6):771–781

    Article  CAS  Google Scholar 

  33. Agashe VR, Hartl FU (2000) Roles of molecular chaperones in cytoplasmic protein folding. Semin Cell Dev Biol 11(1):15–25

    Article  CAS  Google Scholar 

  34. Modisakeng KW, Jiwaji M et al (2009) Isolation of a Latimeria menadoensis heat shock protein 70 (Lmhsp70) that has all the features of an inducible gene and encodes a functional molecular chaperone. Mol Genet Genomics 282(2):185–196

    Article  CAS  Google Scholar 

  35. Louw CA, Ludewig MH et al (2010) The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members. Parasitol Int 59(4):497–505

    Article  CAS  Google Scholar 

  36. Shonhai A, Boshoff A, Blatch GL (2007) The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16(9):1803–1818

    Article  CAS  Google Scholar 

  37. James P, Pfund C, Craig EA (1997) Functional specificity among Hsp70 molecular chaperones. Science 275(5298):387–389

    Article  CAS  Google Scholar 

  38. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346(6285):623–628

    Article  CAS  Google Scholar 

  39. Wisniewska M, Karlberg T et al (2010) Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B′, and HSPA5/BiP/GRP78. PLoS One 5(1):e8625

    Article  CAS  Google Scholar 

  40. Wawrzynow A, Banecki B et al (1995) ATP hydrolysis is required for the DnaJ-dependent activation of DnaK chaperone for binding to both native and denatured protein substrates. J Biol Chem 270(33):19307–19311

    Article  CAS  Google Scholar 

  41. Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47(5):565–577

    Article  CAS  Google Scholar 

  42. Cockburn IL, Pesce ER et al (2011) Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biol Chem 392(5):431–438

    Article  CAS  Google Scholar 

  43. Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25(4):451–457

    Article  CAS  Google Scholar 

  44. Chiosis G, Neckers L (2006) Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. ACS Chem Biol 1(5):279–284

    Article  CAS  Google Scholar 

  45. Acharya P, Kumar R, Tatu U (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153(2):85–94

    Article  CAS  Google Scholar 

  46. Botha M, Pesce ER, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell Biol 39(10):1781–1803

    Article  CAS  Google Scholar 

  47. Banumathy G, Singh V et al (2003) Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278(20):18336–18345

    Article  CAS  Google Scholar 

  48. Pallavi R, Roy N et al (2010) Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 285(49):37964–37975

    Article  CAS  Google Scholar 

  49. Edkins AL, Ludewig MH, Blatch GL (2004) A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40. Int J Biochem Cell Biol 36(8):1585–1598

    Article  CAS  Google Scholar 

  50. Shonhai A, Boshoff A, Blatch GL (2005) Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Mol Genet Genomics 274(1):70–78

    Article  CAS  Google Scholar 

  51. Matambo TS, Odunuga OO et al (2004) Overproduction, purification, and characterization of the Plasmodium falciparum heat shock protein 70. Protein Expr Purif 33(2):214–222

    Article  CAS  Google Scholar 

  52. Ramya TN, Surolia N, Surolia A (2006) 15-Deoxyspergualin modulates Plasmodium falciparum heat shock protein function. Biochem Biophys Res Commun 348(2):585–592

    Article  CAS  Google Scholar 

  53. Bell SL, Chiang AN, Brodsky JL (2011) Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast. PLoS One 6(5):e20047

    Article  CAS  Google Scholar 

  54. Kumar N, Koski G et al (1991) Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasitol 48(1):47–58

    Article  CAS  Google Scholar 

  55. Pesce ER, Acharya P et al (2008) The Plasmodium falciparum heat shock protein 40, Pfj4, associates with heat shock protein 70 and shows similar heat induction and localisation patterns. Int J Biochem Cell Biol 40(12):2914–2926

    Article  CAS  Google Scholar 

  56. Misra G, Ramachandran R (2009) Hsp70-1 from Plasmodium falciparum: protein stability, domain analysis and chaperone activity. Biophys Chem 142(1–3):55–64

    Article  CAS  Google Scholar 

  57. Shonhai A, Botha M et al (2008) Structure-function study of a Plasmodium falciparum Hsp70 using three dimensional modelling and in vitro analyses. Protein Pept Lett 15(10):1117–1125

    Article  CAS  Google Scholar 

  58. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53(12):4585–4602

    Article  CAS  Google Scholar 

  59. Pesce ER, Cockburn IL et al (2010) Malaria heat shock proteins: drug targets that chaperone other drug targets. Infect Disord Drug Targets 10(3):147–157

    Article  CAS  Google Scholar 

  60. Shonhai A (2010) Plasmodial heat shock proteins: targets for chemotherapy. FEMS Immunol Med Microbiol 58(1):61–74

    Article  CAS  Google Scholar 

  61. Nadeau K, Nadler SG et al (1994) Quantitation of the interaction of the immunosuppressant deoxyspergualin and analogs with Hsc70 and Hsp90. Biochemistry 33(9):2561–2567

    Article  CAS  Google Scholar 

  62. Brodsky JL (1999) Selectivity of the molecular chaperone-specific immunosuppressive agent 15-deoxyspergualin: modulation of Hsc70 ATPase activity without compromising DnaJ chaperone interactions. Biochem Pharmacol 57(8):877–880

    Article  CAS  Google Scholar 

  63. Nadler SG, Dischino DD et al (1998) Identification of a binding site on Hsc70 for the immunosuppressant 15-deoxyspergualin. Biochem Biophys Res Commun 253(1):176–180

    Article  CAS  Google Scholar 

  64. Fewell SW, Smith CM et al (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279(49):51131–51140

    Article  CAS  Google Scholar 

  65. Huryn DM, Brodsky JL et al (2011) Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators. Proc Natl Acad Sci USA 108(17):6757–6762

    Article  CAS  Google Scholar 

  66. Wright CM, Chovatiya RJ et al (2008) Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorg Med Chem 16(6):3291–3301

    Article  CAS  Google Scholar 

  67. Chiang AN, Valderramos JC et al (2009) Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorg Med Chem 17(4):1527–1533

    Article  CAS  Google Scholar 

  68. Botha M, Chiang AN et al (2011) Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperones 16(4):389–401

    Article  CAS  Google Scholar 

  69. Wisen S, Bertelsen EB et al (2010) Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40. ACS Chem Biol 5(6):611–622

    Article  CAS  Google Scholar 

  70. Bonifazi EL, Rios-Luci C et al (2010) Antiproliferative activity of synthetic naphthoquinones related to lapachol. First synthesis of 5-hydroxylapachol. Bioorg Med Chem 18(7):2621–2630

    Article  CAS  Google Scholar 

  71. Pérez-Sacau E, Estévez-Braun A et al (2005) Antiplasmodial activity of naphthoquinones related to lapachol and beta-lapachone. Chem Biodivers 2(2):264–274

    Article  Google Scholar 

  72. Guiguemde WA, Shelat AA et al (2010) Chemical genetics of Plasmodium falciparum. Nature 465(7296):311–315

    Article  CAS  Google Scholar 

  73. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  CAS  Google Scholar 

  74. Buchner J (1999) Hsp90 & Co. – a holding for folding. Trends Biochem Sci 24(4):136–141

    Article  CAS  Google Scholar 

  75. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82(8):488–499

    Article  CAS  Google Scholar 

  76. Odunuga OO, Longshaw VM, Blatch GL (2004) Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays 26(10):1058–1068

    Article  CAS  Google Scholar 

  77. Kamal A, Thao L et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410

    Article  CAS  Google Scholar 

  78. Onuoha SC, Mukund SR et al (2007) Mechanistic studies on Hsp90 inhibition by ansamycin derivatives. J Mol Biol 372(2):287–297

    Article  CAS  Google Scholar 

  79. Taldone T, Gozman A et al (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8(4):370–374

    Article  CAS  Google Scholar 

  80. Jensen MR, Schoepfer J et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33

    Article  CAS  Google Scholar 

  81. Tsutsumi S, Scroggins B et al (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27(17):2478–2487

    Article  CAS  Google Scholar 

  82. Sydor JR, Normant E et al (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA 103(46):17408–17413

    Article  CAS  Google Scholar 

  83. Donnelly A, Blagg BS (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15(26):2702–2717

    Article  CAS  Google Scholar 

  84. van der Merwe E, Huang D et al (2008) The synthesis and anticancer activity of selected diketopiperazines. Peptides 29(8):1305–1311

    Article  CAS  Google Scholar 

  85. Bisi-Johnson MA, Obi CL et al (2011) Evaluation of the antibacterial and anticancer activities of some South African medicinal plants. BMC Complement Altern Med 11:14

    Article  Google Scholar 

  86. Eustace BK, Sakurai T et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6(6):507–514

    Article  CAS  Google Scholar 

  87. Becker B, Multhoff G et al (2004) Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 13(1):27–32

    Article  CAS  Google Scholar 

  88. Sidera K, Samiotaki M et al (2004) Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 279(44):45379–45388

    Article  CAS  Google Scholar 

  89. Sims JD, McCready J, Jay DG (2011) Extracellular heat shock protein (Hsp)70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 6(4):e18848

    Article  CAS  Google Scholar 

  90. Lawson JC, Blatch GL, Edkins AL (2009) Cancer stem cells in breast cancer and metastasis. Breast Cancer Res Treat 118(2):241–254

    Article  Google Scholar 

  91. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124(6):1111–1115

    Article  CAS  Google Scholar 

  92. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  CAS  Google Scholar 

  93. Burger PE, Gupta R et al (2009) High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27(9):2220–2228

    Article  CAS  Google Scholar 

  94. Ma S, Lee TK et al (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27(12):1749–1758

    Article  CAS  Google Scholar 

  95. Glinsky GV (2007) Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 3(1):79–93

    Article  CAS  Google Scholar 

  96. Prinsloo E, Setati MM et al (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? Bioessays 31(4):370–377

    Article  CAS  Google Scholar 

  97. Kim HL, Cassone M et al (2008) HIF-1alpha and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther 7(1):10–14

    CAS  Google Scholar 

  98. Setati MM, Prinsloo E et al (2010) Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells. IUBMB Life 62(1):61–66

    CAS  Google Scholar 

  99. Sauvageot CM, Weatherbee JL et al (2008) Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol 11(2):109–121

    Article  CAS  Google Scholar 

  100. Hambardzumyan D, Becher OJ et al (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22(4):436–448

    Article  CAS  Google Scholar 

  101. Ali A, Bharadwaj S et al (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18(9):4949–4960

    CAS  Google Scholar 

  102. Conde R, Belak ZR et al (2009) Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 87(6):845–851

    Article  CAS  Google Scholar 

  103. McCollum AK, Teneyck CJ et al (2006) Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res 66(22):10967–10975

    Article  CAS  Google Scholar 

  104. McCollum AK, Lukasiewicz KB et al (2008) Cisplatin abrogates the geldanamycin-induced heat shock response. Mol Cancer Ther 7(10):3256–3264

    Article  CAS  Google Scholar 

  105. Nagai Y, Fujikake N et al (2010) Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases. Curr Pharm Biotechnol 11(2):188–197

    Article  CAS  Google Scholar 

  106. Westerheide SD, Bosman JD et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56053–56060

    Article  CAS  Google Scholar 

  107. Massey AJ, Williamson DS et al (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66(3):535–545

    Article  CAS  Google Scholar 

  108. Whitesell L, Lindquist S (2009) Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 13(4):469–478

    Article  CAS  Google Scholar 

  109. Trepel J, Mollapour M et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549

    Article  CAS  Google Scholar 

  110. Wang Y, Trepel JB et al (2010) STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 11(12):1466–1476

    CAS  Google Scholar 

  111. Kim YS, Alarcon SV et al (2009) Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 9(15):1479–1492

    Article  CAS  Google Scholar 

  112. Brauns SC, Dealtry G et al (2005) Caspase-3 activation and induction of PARP cleavage by cyclic dipeptide cyclo(Phe-Pro) in HT-29 cells. Anticancer Res 25(6B):4197–4202

    CAS  Google Scholar 

  113. Brauns SC, Milne P et al (2004) Selected cyclic dipeptides inhibit cancer cell growth and induce apoptosis in HT-29 colon cancer cells. Anticancer Res 24(3a):1713–1719

    CAS  Google Scholar 

  114. Afolayan AF, Mann MG et al (2009) Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum. Phytochemistry 70(5):597–600

    Article  CAS  Google Scholar 

  115. Afolayan AF, Bolton JJ et al (2008) Fucoxanthin, tetraprenylated toluquinone and toluhydroquinone metabolites from Sargassum heterophyllum inhibit the in vitro growth of the malaria parasite Plasmodium falciparum. Z Naturforsch C 63(11–12):848–852

    CAS  Google Scholar 

  116. Antunes EM, Beukes DR et al (2004) Cytotoxic pyrroloiminoquinones from four new species of South African latrunculid sponges. J Nat Prod 67(8):1268–1276

    Article  CAS  Google Scholar 

  117. Kampinga HH, Hageman J et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  Google Scholar 

  118. Louw CA, Ludewig MH, Blatch GL (2010) Overproduction, purification and characterisation of Tbj1, a novel Type III Hsp40 from Trypanosoma brucei, the African sleeping sickness parasite. Protein Expr Purif 69(2):168–177

    Article  CAS  Google Scholar 

  119. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3(1):28–36

    Article  CAS  Google Scholar 

  120. Hennessy F, Boshoff A, Blatch GL (2005) Rational mutagenesis of a 40 kDa heat shock protein from Agrobacterium tumefaciens identifies amino acid residues critical to its in vivo function. Int J Biochem Cell Biol 37(1):177–191

    Article  CAS  Google Scholar 

  121. Hennessy F, Cheetham ME et al (2000) Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins. Cell Stress Chaperones 5(4):347–358

    Article  CAS  Google Scholar 

  122. Walsh N, Larkin A et al (2011) RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett 306(2):180–189

    Article  CAS  Google Scholar 

  123. Longshaw VM, Chapple JP et al (2004) Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases. J Cell Sci 117(Pt 5):701–710

    Article  CAS  Google Scholar 

  124. Longshaw VM, Baxter M et al (2009) Knockdown of the co-chaperone Hop promotes extranuclear accumulation of Stat3 in mouse embryonic stem cells. Eur J Cell Biol 88(3):153–166

    Article  CAS  Google Scholar 

  125. Daniel S, Bradley G et al (2008) Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding. Biochim Biophys Acta 1783(6):1003–1014

    Article  CAS  Google Scholar 

  126. Stephens LL, Shonhai A, Blatch GL (2011) Co-expression of the Plasmodium falciparum molecular chaperone, PfHsp70, improves the heterologous production of the antimalarial drug target GTP cyclohydrolase I, PfGCHI. Protein Expr Purif 77(2):159–165

    Article  CAS  Google Scholar 

  127. Bodill T, Conibear AC et al (2011) Synthesis and evaluation of phosphonated N-heteroarylcarboxamides as DOXP-reductoisomerase (DXR) inhibitors. Bioorg Med Chem 19(3):1321–1327

    Article  CAS  Google Scholar 

  128. Goble JL, Adendorff MR et al (2010) The malarial drug target Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR): development of a 3-D model for identification of novel, structural and functional features and for inhibitor screening. Protein Pept Lett 17(1):109–120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrienne L. Edkins or Gregory L. Blatch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Edkins, A.L., Blatch, G.L. (2012). Targeting Conserved Pathways as a Strategy for Novel Drug Development: Disabling the Cellular Stress Response. In: Chibale, K., Davies-Coleman, M., Masimirembwa, C. (eds) Drug Discovery in Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28175-4_4

Download citation

Publish with us

Policies and ethics