Skip to main content

A Hierarchical Modeling Approach of Thermal Vias Using CNT-based Composites

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices

Abstract

Thermal problems are one of the most crucial problems that must be addressed when designing electronic systems with high-density nano-scale structures. A promising approach is the enhancement of the thermal conductivity by using thermal vias with thermally high-conductive composites, such as polymers filled with carbon nanotubes (CNTs). The chapter presents a modeling approach that considers the complex behavior of CNTs in composites in order to predict the thermal system behavior. The approach is based on a hierarchical finite element analysis model of thermal via arrays. It comprises the levels CNT, composite base cube, thermal via and via array. By using the effective medium approach of a composite base cube, CNTs can be integrated into a macroscopic model despite their nanometer scale. Such an optimized model of thermal via arrays using CNT-based composites significantly simplifies thermal simulations of these nanoscale structures. Results achieved using the presented modeling approach allow an efficient comparision of various technological solutions prior to practical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alaghemandi, M.: The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology. 20, 1–8 (2009). doi:10.1088/0957-4484/20/11/115704

  2. Ando, Y., Zhao, X., Sugai, T., Kumar, M.: Growing carbon nanotubes. Mater. Today 7(10), 22–29 (2004)

    Article  CAS  Google Scholar 

  3. Avouris, P., Chen, Z., Perebeinos, V.: Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007). doi:10.1038/nnano.2007.300

  4. Awano, Y.: Carbon nanotube technologies for LSI via interconnects. IEICE Trans. Electron. E89-C(11), 1499–1503 (2006). doi:10.1093/ietele/e89-c.11.1499

  5. Bagchi, A., Nomura, S.: On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Compos. Sci. Technol. 66, 1703–1712 (2006). doi:10.1016/j.compscitech.2005.11.003

    Google Scholar 

  6. Bijua, V., Itoha, T., Makitab, Y., Ishikawa, M.: Close-conjugation of quantum dots and gold nanoparticles to sidewall functionalized single-walled carbon nanotube templates. J. Photochem. Photobiol., A 183, 315–321 (2006). doi:10.1016/j.jphotochem.2006.06.032

    Google Scholar 

  7. Borca-Tasciuc, D.A., Pietruszka, L., Borca-Tasciuc T., Vajtai, R., Ajayan, P.: Thermal transport measurements in multi-wall carbon nanotube strands using the \(3\omega \) method. In: IEEE Twenty First Annual Semiconductor Thermal Measurement and Management Symposium, pp. 247–252 (2005). doi:10.1109/STHERM.2005.1412187

  8. Bower, C.A., Malta, D., Temple, D., Robinson, J.E., Coffman, P.R., Skokan, M.R., Welch, T.B.: High density, vertical interconnects for 3-D integration of silicon integrated circuits. In: 56th Proceedings of Electronic Components and Technology Conference, pp. 399–403 (2006). doi:10.1109/ECTC.2006.1645677

  9. Chai, Y., Zhang, K., Zhang, M., Chan, P.C.H., Yuen, M.M.F.: Carbon nanotube/copper composites for via filling and thermal management. In: Proceedings of 57th Electronic Components and Technology Conference (ECTC ’07), pp. 1224–1229 (2007). doi:10.1109/ECTC.2007.373950

  10. Chiriac, V.A., Lee, T.Y.T.: Thermal assessment of RF integrated LTCC front end module (FEM). In: Proceedings of Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), pp. 520–527 (2002). doi:10.1109/ITHERM.2002.1012500

  11. Cola, B.A., Xu, J., Fisher, T.S.: Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transfer 52, 3490–3503 (2009)

    Google Scholar 

  12. Duong, H.M., Papavassiliou, D.V.: Random walks in nanotube composites: Improved algorithms and the role of thermal boundary resistance. Appl. Phys. Lett. 87, 013101-1–013101-3 (2005). doi:10.1063/1.1940737

    Google Scholar 

  13. Duong, H.M., Yamamoto, N., Papavassiliou, D.V., ShigeoMaruyama, Wardle, B.L.: Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites. Nanotechnology. 20, 1–23 (2009). doi:10.1088/0957-4484/20/15/155702

  14. Evoy, S., Riegelman, M.A., Naguib, N., Ye, H., Jaroenapibal, P., Luzzi, D.E., Gogotsi, Y.: Dielectrophoretic assembly of carbon nanofiber nanoelectromechanical devices. IEEE Trans. Nanotechnol. 4(5), 570–575 (2005). doi:10.1109/TNANO.2005.851404

    Article  Google Scholar 

  15. Gonnet, P.: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Current Applied Physics 6, 119–122 (2006). doi:10.1016/j.cap. 2005.01.053

    Google Scholar 

  16. Goplen, B., Sapatnekar, S.S.: Placement of thermal vias in 3-D ICs using various thermal objectives. IEEE Trans. Comput. Aid. Des. 25(4), 692–709 (2006). doi:10.1109/TCAD.2006.870069

    Article  Google Scholar 

  17. Heimann, M., Lemm, J., Wolter, K.J.: Characterization of carbon nanotubes/epoxy composites for electronics applications. In: Proceedings of 30th International Spring Seminar on Electronics Technology, pp. 1–6 (2007). doi:10.1109/ISSE.2007.4432811

  18. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Springer, New York (2009)

    Google Scholar 

  19. Igarashi, Y., Shibuta, Y., Maruyama, S.: Heat transfer problems related with carbon nanotubes by molecular dynamics-based simulations. In: 1st International Forum on Heat Transfer (2004)

    Google Scholar 

  20. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 1–4 (2001). doi:10.1103/PhysRevLett.87.215502

    Google Scholar 

  21. Koker, T.: Konzeption und Realisierung einer neuen Prozesskette zur Integration von Kohlenstoff-Nanoröhren über Handhabung in technischen Anwendungen, Universitätsverlag Karlsruhe (2006)

    Google Scholar 

  22. LeMieux, M.C., Roberts, M., Barman, S., Jin, Y.W., Kim, J.M., Bao, Z.: Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885), 101–104 (2008). doi:10.1126/science.1156588

    Article  CAS  Google Scholar 

  23. Li, J., Zhang, Q., Yan, Y., Li, S., Chen, L.: Fabrication of carbon nanotube field-effect transistors by fluidic alignment technique. IEEE Trans. Nanotechnol. 6(4), 481–484 (2007). doi:10.1109/TNANO.2007.897868

    Article  Google Scholar 

  24. Li, Z., Hong, X., Zhou, Q., Zeng, S., Bian, J., Yu, W., Yang, H.H., Pitchumani, V., Cheng, C.K.: Efficient thermal via planning approach and its application in 3-D floorplanning. IEEE Trans. Comput. Aid. Des. 26(4), 645–658 (2007). doi:10.1109/TCAD.2006.885831

    Article  CAS  Google Scholar 

  25. Liu, Y.J., Chen, X.L.: Continuum models of carbon nanotube-based composites using the boundary element method. Electron. J. Boundary Elem. 1, 316–335 (2003)

    Google Scholar 

  26. Lukes, J.R., Zhong, H.: Thermal conductivity of individual single-wall carbon nanotubes. J. Heat Transf. 129, 705–716 (2007)

    Article  CAS  Google Scholar 

  27. Maiti, A.: Multiscale modeling with carbon nanotubes. Microelectron. J. 39, 208–221 (2008). doi:10.1016/j.mejo.2006.06.003

    Google Scholar 

  28. Maruyama, S.: A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B 323, 193–195 (2002)

    Google Scholar 

  29. Maruyama, S., Igarashi, Y., Taniguchi, Y., Shiomi, J.: Anisotropic heat transfer of single-walled carbon nanotubes. J. Therm. Sci. Technol. 1, 138–148 (2006). doi:10.1299/jtst.1.138

    Google Scholar 

  30. Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y. (eds.): Handbook of Numerical Heat Transfer. Wiley, New York (2006)

    Google Scholar 

  31. Mirza, S.M., Grebel, H.: Thermoelectric properties of aligned carbon nanotubes. Appl. Phys. Lett. 92, 203116 (2008). doi:10.1063/1.2931084

    Google Scholar 

  32. Monica, A.H., Papadakis, S.J., Osiander, R., Paranjape, M.: Wafer-level assembly of carbon nanotube networks using dielectrophoresis. Nanotechnology. 19, 085303 (2008). doi:10.1088/0957-4484/19/8/085303

  33. Nan, C.W., Liu, G., Lin, Y., Li, M.: Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, 3549–3551 (2004). doi:10.1063/1.1808874

    Google Scholar 

  34. Nan, C.W., Shi, Z., Lin, Y.: A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett. 375, 666–669 (2003). doi:10.1016/S0009-2614(03)009564

    Google Scholar 

  35. Narayanan, A., Dan, Y., Deshpande, V., Lello, N.D., Evoy, S., Raman, S.: Dielectrophoretic integration of nanodevices with CMOS VLSI circuitry. IEEE Trans. Nanotechnol. 5(2), 101–109 (2006). doi:10.1109/TNANO.2006.869679

    Article  Google Scholar 

  36. Nishimura, N., Liu, Y.J.: Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method. Comput. Mech. 35, 1–10 (2004). doi:10.1007/s00466-004-0580-2

    Google Scholar 

  37. Osman, M.A., Srivastava, D.: Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes. Phys. Rev. B: Condens. Matter 72, 125413-1–125413-7 (2005). doi:10.1103/PhysRevB.76.155424

  38. Rao, C.N.R., Müller, A., Cheetham, A.K. (eds.): The Chemistry of Nanomaterials. Wiley-VCH, Weinheim (2005). doi:10.1002/352760247X

  39. Romero, J.J.: Carbon nanotubes take the heat off chips. IEEE Spectr. 12, 12–14 (2007)

    Article  Google Scholar 

  40. Rui-Qin, P., Zi-Jian, X., Zhi-Yuan, Z.: Length dependence of thermal conductivity of single-walled carbon nanotubes. Chin. Phys. Lett. 24, 1321–1323 (2006)

    Google Scholar 

  41. Sanada, K., Tada, Y., Shindo, Y.: Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Composites Part A 40, 724–730 (2009). doi:10.1016/j.compositesa.2009.02.024

  42. Sapatnekar, S.S.: Computer-Aided Design for 3D Circuits at the University of Minnesota. In: Garrou, P., Bower, C., Ramm, P. (eds.): Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits, pp. 583–597. Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim (2008)

    Google Scholar 

  43. Scheffer, L.K.: CAD implications of new interconnect technologies. In: Proceedings of the 44th annual conference on Design automation (DAC), pp. 576–581. New York, USA (2007). doi:10.1145/1278480.1278626

  44. Shiomi, J., Maruyama, S.: Heat conduction of single-walled carbon nanotube in various environments. In: 2nd International Symposium on Micro- and Nano-technology (2006)

    Google Scholar 

  45. Shiomi, J., Maruyama, S.: Diameter and length effect on diffusive-ballistic phonon transport in a carbon nanotube. In: ASME-JSME Thermal Engineering Summer Heat Transfer Conference (2007)

    Google Scholar 

  46. Shiomi, J., Maruyama, S.: Diffusive-ballistic heat conduction of carbon nanotubes and nanographene ribbons. Int. J. Therm. Sci. 29, 1–12 (2008). doi:10.1007/s10765-008-0516-8

    Google Scholar 

  47. Singh, I.V., Tanaka, M., Endo, M.: Effect of interface on the thermal conductivity of carbon nanotube composites. Int. J. Therm. Sci. 46, 842–847 (2007). doi:10.1016/j.ijthermalsci.2006.11.003

    Google Scholar 

  48. Song, Y.S.: Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method. Carbon 44 710–717, 2006. doi:10.1016/j. carbon .2005.09.034

  49. Stevens, R., Nguyen, C., Meyyappan, M.: Nanomanipulation and fabrication by ion beam molding. IEEE T. Nanotechnol. 5(3), 255–257 (2006). doi:10.1109/TNANO.2006.874056

    Article  Google Scholar 

  50. Tserpes, K.I., Papanikos, P.: Continuum modeling of carbon nanotube-based super-structures. Compos. Struct. 91, 131–137 (2009)

    Article  Google Scholar 

  51. Ueno, T., Yoshioka, T., Ogawa, J., Ozoe, N., Sato, K., Yoshino, K.: Highly thermal conductive metal/carbon composites by pulsed electric current sintering. Synth. Met. 159, 2170–2172 (2009). doi:10.1016/j.synthmet.2009.10.006

  52. Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., Krupke, R.: Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7(6), 1556–1560 (2007). doi:10.1021/nl0703727

    Article  CAS  Google Scholar 

  53. Wang, J., Wang, J.S.: Carbon nanotube thermal transport: Ballistic to diffusive. Appl. Phys. Lett. 88, 111909-1–111909-3 (2006). doi:10.1063/1.2185727

    Google Scholar 

  54. Wikipedia: http://en.wikipedia.org/wiki/file:cntnames.png (01.10.2005)

  55. Wirts-Rutters, M., Heimann, M., Kolbe, J., Wolter, K.J.: Carbon nanotube (CNT) filled adhesives for microelectronic packaging. In: Proceedings of the 2nd Electronics Systemintegration Technology Conference (ESTC), pp. 1057–1062 (2008). doi:10.1109/ESTC.2008.4684498

  56. Wu, M.C.H., Hsu, J.Y.: Thermal conductivity of carbon nanotubes with quantum correction via heat capacity. Nanotechnology. 20, 1–6 (2009). doi:10.1088/0957-4484/20/14/145401

    Google Scholar 

  57. Xu, T., Wang, Z., Chen, J.M.X., Tan, C.M.: Aligned carbon nanotubes for through-wafer interconnects. Appl. Phys. Lett. 91(042108), 1–3 (2007). doi:10.1063/1.2759989

    Google Scholar 

  58. Xue, Q.Z.: Model for thermal conductivity of carbon nanotube-based composites. Physica B 368, 302–307 (2005). doi:10.1016/j.progpolymsci.2007.09.002

  59. Yamamoto, T., Watanabe, S., Watanabe, K.: Low-temperature thermal conductance of carbon nanotubes. Thin Solid Films 464, 350–353 (2004)

    Article  Google Scholar 

  60. Yang, X.S.: Modelling heat transfer of carbon nanotubes. Modelling Simul. Mater. Sci. Eng. 13, 893–902 (2005). doi:10.1088/0965-0393/13/6/008

    Google Scholar 

  61. Ye, H., Gu, Z., Yu, T., Gracias, D.H.: Integrating nanowires with substrates using directed assembly and nanoscale soldering. IEEE T. Nanotechnol. 5(1), 62–66 (2006). doi:10.1109/TNANO.2005.861399

    Article  Google Scholar 

  62. Yu, H., Ho, J., He, L.: Simultaneous power and thermal integrity driven via stapling in 3D ICs. In: Proceedings of the IEEE/ACM international conference on Computer-aided design, pp. 802–808. ACM Press, New York, USA (2006). doi:10.1145/1233501.1233666

  63. Zeng, Q.H., Yu, A.B., Lu, G.Q.: Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33, 191–269 (2008). doi:10.1016/j.progpolymsci.2007.09.002

  64. Zhan, Y., Goplen, B., Sapatnekar, S.S.: Electrothermal analysis and optimization techniques for nanoscale integrated circuits. In: Proceedings of the 2006 Asia and South Pacific Design Automation Conference ASP-DAC 2006, pp. 219–222. Yokohama, Japan (2006)

    Google Scholar 

  65. Zhang, G., Li, B.: Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 123, 114714-1–114714-4 (2005). doi:10.1103/PhysRevB.78.085431

    Google Scholar 

  66. Zhang, J., Tanaka, M.: Systematic study of thermal properties of CNT composites by the fast multipole hybrid boundary node method. Eng. Anal. Boundary Elem. 31, 388–401 (2007). doi:10.1016/j.enganabound.2006.07.011

  67. Zhang, J., Tanaka, M.: Fast HdBNM for large-scale thermal analysis of CNT-reinforced composites. Comput. Mech. 41, 777–787 (2008). doi:10.1007/s00466-007-0161-2

    Google Scholar 

  68. Zhang, K., Fan, H., Yuen, M.M.F.: Molecular dynamics study on thermal performance of CNT-array-thermal interface material. In: Proceedings of the International Conference on Electronic Materials and Packaging (EMAP), pp. 1–4 (2006). doi:10.1109/EMAP.2006.4430586

  69. Zhang, K., Xiao, G.W., Wong, C.K.Y., Gu, H.W., Yuen, M.M.F., Chan, P.C.H., Xu, B.: Study on thermal interface material with carbon nanotubes and carbon black in high-brightness LED packaging with flip-chip. In: Proceedings of the 55th Electronic Components and Technology Conference, pp. 60–65 (2005). doi:10.1109/ECTC.2005.1441246

  70. Zhang, W., Zhu, Z., Wang, F., Wang, T., Sun, L., Wang, Z.: Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology. 15, 936–939 (2004). doi:10.1088/0957-4484/15/8/010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Neubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hertwig, J., Neubert, H., Lienig, J. (2012). A Hierarchical Modeling Approach of Thermal Vias Using CNT-based Composites. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_30

Download citation

Publish with us

Policies and ethics