Skip to main content

Smooth Coordination and Navigation for Multiple Differential-Drive Robots

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

Multiple independent robots sharing the workspace need to be able to navigate to their goals while avoiding collisions with each other. In this paper, we describe and evaluate two algorithms for smooth and collision-free navigation for multiple independent differential-drive robots.We extend reciprocal collision avoidance algorithms based on velocity obstacles and on acceleration-velocity obstacles. We implement bothmethods on multiple iRobot Create differential-drive robots, and report on the quality and ability of the robots using the two algorithms to navigate to their goals in a smooth and collision-free manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y., Yoshiki, M.: Collision avoidance method for multiple autonomous mobile agents by implicit cooperation. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 1207–1212 (2001)

    Google Scholar 

  2. Balkcom, D.J., Mason, M.T.: Time optimal trajectories for bounded velocity differential drive vehicles. Int. J. Robot. Res. 21(3), 199–217 (2002)

    Article  Google Scholar 

  3. Bekris, K.E., Tsianos, K.I., Kavraki, L.E.: A decentralized planner that guarantees the safety of communicating vehicles with complex dynamics that replan online. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 3784–3790 (2007)

    Google Scholar 

  4. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Proc. Int. Symp. Robot. Res. (2009)

    Google Scholar 

  5. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1928–1935 (2008)

    Google Scholar 

  6. van den Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal collision avoidance with acceleration-velocity obstacles. In: Proc. IEEE Int. Conf. Robot. Autom. (2011)

    Google Scholar 

  7. Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

    Article  Google Scholar 

  8. Fiorini, P., Botturi, D.: Introducing service robotics to the pharmaceutical industry. Intell. Serv. Robot. 1(4), 267–280 (2008)

    Article  Google Scholar 

  9. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  10. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4, 23–33 (1997)

    Article  Google Scholar 

  11. Jones, J.L., Mack, N.E., Nugent, D.M., Sandin, P.E.: Autonomous floor-cleaning robot. U.S. Pat. 6, 883, 201 (2005)

    Google Scholar 

  12. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  13. Kant, K., Zucker, S.W.: Towards efficient trajectory planning: The path-velocity decomposition. Int. J. Robot. Res. 5(3), 72–89 (1986)

    Article  Google Scholar 

  14. Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proc. IEEE ACM Int. Work. Augment. Real., pp. 85–94 (1999)

    Google Scholar 

  15. Kluge, B., Prassler, E.: Reflective navigation: Individual behaviors and group behaviors. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 4172–4177 (2004)

    Google Scholar 

  16. Latombe, J.C.: Robot Motion Planning. Springer Int. Ser. Eng. Comput. Sci., vol. 124. Springer (1991)

    Google Scholar 

  17. La Valle, S.M.: Planning Algorithms. Cambridge Univ. Pr. (2006)

    Google Scholar 

  18. Michael, N., Fink, J., Kumar, V.: Experimental testbed for large multirobot teams. IEEE Robot. Autom. Mag. 15(1), 53–61 (2008)

    Article  Google Scholar 

  19. Pallottino, L., Scordio, V.G., Bicchi, A., Frazzoli, E.: Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Trans. Robot. Autom. 23(6), 1170–1183 (2007)

    Article  Google Scholar 

  20. Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 2210–2215 (2005)

    Google Scholar 

  21. Philippsen, R., Siegwart, R.: Smooth and efficient obstacle avoidance for a tour guide robot. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 1, pp. 446–451 (2003)

    Google Scholar 

  22. Prassler, E., Scholz, J., Fiorini, P.: A robotic wheelchair for crowded public environments. IEEE Robot. Autom. Mag. 8(1), 38–45 (2001)

    Article  Google Scholar 

  23. Roh, S., Choi, H.: Strategy for navigation inside pipelines with differential-drive inpipe robot. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 3, pp. 2575–2580 (2002)

    Google Scholar 

  24. Snape, J., van den. Berg, J., Guy, S.J., Manocha, D.: Independent navigation of multiple mobile robots with hybrid reciprocal velocity obstacles. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 5917–5922 (2009)

    Google Scholar 

  25. Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: Smooth and collision-free navigation for multiple robots under differential-drive constraints. In: Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 4584–4589 (2010)

    Google Scholar 

  26. Welch, G., Bishop, G.: An introduction to the Kalman filter. Tech. Rep. 95-041, Univ. N. Carolina Chapel Hill (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Snape .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Snape, J., Guy, S.J., van den Berg, J., Manocha, D. (2014). Smooth Coordination and Navigation for Multiple Differential-Drive Robots. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics