Skip to main content

Combining Machine-to-Machine Communications with Intelligent Objects in Logistics

  • Conference paper
The Impact of Virtual, Remote, and Real Logistics Labs (ImViReLL 2012)

Abstract

The combination of Machine-to-Machine (M2M) communication and intelligent objects can largely improve the supervision of logistic processes. This requires global mobile communications and short-range wireless sensor nodes. We assembled a demonstrator using off-the-shelf hardware for tests and classroom experiments that shows the feasibility of implementation of the future Internet of Things. It includes the use of embedded devices to perform local intelligent data processing and allows an evaluation of the advantages of ubiquitous M2M communication on a laboratory scale. New software features can be deployed, either to the gateway-device in the form of OSGi-bundles or to the sensor nodes in the form of MIDlet-suites, by using M2M-technology. As an example, we programmed an algorithm for predicting temperature curves in a container using real acquired datasets. A gateway bridges the local and the global network. Sensor messages can be forwarded via email and SMS or be provided by a web server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Open Geospatial Consortium, http://www.opengeospatial.org/

  2. Bowman, P., Ng, J., Harrison, M., López, T.S., Illic, A.: Sensor based condition monitoring. BRIDGE (2009), http://www.bridge-project.eu/data/File/BRIDGE_WP03_sensor_based_condition_monitoring.pdf

  3. EPCglobal, http://www.gs1.org/epcglobal

  4. Kim, H., Ryu, W., Hong, B.: Extension of RFID Middleware Platform for Handling Active Sensor Tags. In: Proceedings of the 2010 Fourth International Conference on Sensor Technologies and Applications, pp. 163–168. IEEE Computer Society (2010)

    Google Scholar 

  5. Aberer, K., Hauswirth, M., Salehi, A.: Global Sensor Networks, Technical report LSIRREPORT- 2006-001 (2006), http://lsirpeople.epfl.ch/salehi/papers/LSIR-REPORT-2006-001.pdf

  6. Jaekyu, C., Yoonbo, S., Taekyoung, K., Yanghee, C.: SARIF: A novel framework for integrating wireless sensor and RFID networks. IEEE Wirel. Commun. 14(6), 50–56 (2007)

    Article  Google Scholar 

  7. Smart Trace, http://www.smart-trace.com/index.php

  8. Palafox-Albarrán, J., Jedermann, R., Lang, W.: Energy-Efficient Parameter Adaptation and Prediction Algorithms for the Estimation of Temperature Development Inside a Food Container. In: Cetto, J.A., Ferrier, J.-L., Filipe, J. (eds.) Informatics in Control, Automation and Robotics, pp. 77–90. Springer, Berlin (2011)

    Chapter  Google Scholar 

  9. M2M Communications, http://www.m2mcomm.com/about/what-is-m2m/index.html

  10. Verdone, R.: Wireless sensor and actuator networks: technologies, analysis and design. Academic Press (2008)

    Google Scholar 

  11. Sun Labs.: SunTM Small Programmable Object Technology (Sun SPOT) Theory of Operation (2007), http://sunspotworld.com/docs/Purple/SunSPOT-TheoryOfOperation.pdf

  12. Haller, S., Hodges, S.: White Paper: The Need for a Universal SmartSensor Network. Auto-ID Centre Institute for Manufacturing, University of Cambridge (2002)

    Google Scholar 

  13. Mitsugi, J., Inaba, T., Pátkai, B., Theodorou, L., Sung, J., Sánchez López, T., Kim, D., McFarlane, D., Hada, H., Kawakita, Y., Osaka, K., Nakamura, O.: Architecture Development for Sensor Integration in the EPCglobal Network. Auto-ID Centre Institute for Manufacturing, University of Cambridge (2007)

    Google Scholar 

  14. Uckelmann, D., Harrison, M., Michahelles, F.: An Architectural Approach Towards the Future Internet of Things. In: Uckelmann, D., Harrison, M., Michahelles, F. (eds.) Architecting the Internet of Things, pp. 1–24. Springer, Berlin (2011)

    Chapter  Google Scholar 

  15. Jedermann, R., Moehrke, A., Lang, W.: Supervision of banana transport by the intelligent container. In: Kreyenschmidt, J. (ed.) 4th International Workshop, Coolchain-Management, pp. 75–84. University Bonn, Bonn (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palafox-Albarran, J., Dannies, A., Krishna Sanjeeva, B., Lang, W., Jedermann, R. (2012). Combining Machine-to-Machine Communications with Intelligent Objects in Logistics. In: Uckelmann, D., Scholz-Reiter, B., Rügge, I., Hong, B., Rizzi, A. (eds) The Impact of Virtual, Remote, and Real Logistics Labs. ImViReLL 2012. Communications in Computer and Information Science, vol 282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28816-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28816-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28815-9

  • Online ISBN: 978-3-642-28816-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics