Skip to main content

Efficient Phenotype Evaluation in Cartesian Genetic Programming

  • Conference paper
Genetic Programming (EuroGP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7244))

Included in the following conference series:

Abstract

This paper describes an efficient acceleration technique designed to speedup the evaluation of candidate solutions in Cartesian Genetic Programming (CGP). The method is based on translation of the CGP phenotype to a binary machine code that is consequently executed. The key feature of the presented approach is that the introduction of the translation mechanism into common fitness evaluation procedure requires only marginal knowledge of target CPU instruction set. The proposed acceleration technique is evaluated using a symbolic regression problem in floating point domain. It is shown that for a cost of small changes in a common CGP implementation, a significant speedup can be obtained even on a common desktop CPU. The accelerated version of CGP implementation accompanied with performance analysis is available for free download from http://www.fit.vutbr.cz/~vasicek/cgp

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11(3-4), 251–284 (2010)

    Article  Google Scholar 

  2. Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital Circuits – Part I. Genetic Programming and Evolvable Machines 1(1), 8–35 (2000)

    Article  Google Scholar 

  3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  4. Haddow, P., Tyrrell, A.: Challenges of evolvable hardware: past, present and the path to a promising future. Genetic Programming and Evolvable Machines 12, 183–215 (2011)

    Article  Google Scholar 

  5. Handley, S.: On the use of a directed acyclic graph to represent a population of computer programs. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 154–159 (1994)

    Google Scholar 

  6. Sekanina, L., Friedl, S.: An evolvable combinational unit for FPGAs. Computing and Informatics 23(5), 461–486 (2004)

    MATH  Google Scholar 

  7. Glette, K., Torresen, J.: A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro Device. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 66–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Vasicek, Z., Sekanina, L.: Hardware Accelerators for Cartesian Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 230–241. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Harding, S.: Evolution of image filters on graphics processor units using cartesian genetic programming. In: 2008 IEEE World Congress on Computational Intelligence, Hong Kong, pp. 1921–1928. IEEE Computational Intelligence Society, IEEE Press (2008)

    Google Scholar 

  10. Harding, S., Banzhaf, W.: Implementing cartesian genetic programming classifiers on graphics processing units using GPU.NET. In: GECCO 2011: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 463–470. ACM, New York (2011)

    Google Scholar 

  11. Chitty, D.M.: A data parallel approach to genetic programming using programmable graphics hardware. In: GECCO 2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1566–1573. ACM Press, London (2007)

    Chapter  Google Scholar 

  12. Harding, S., Banzhaf, W.: Fast Genetic Programming on GPUs. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Vasicek, Z., Sekanina, L.: Hardware accelerator of cartesian genetic programming with multiple fitness units. Computing and Informatics 29(7), 1359–1371 (2010)

    Google Scholar 

  14. Poli, R., Langdon, W.B.: Sub-machine-code genetic programming. In: Advances in Genetic Programming, ch. 13, vol. 3, pp. 301–323. MIT Press (1998)

    Google Scholar 

  15. Fukunaga, A., Stechert, A., Mutz, D.: A genome compiler for high performance genetic programming, pp. 86–94. University of Wisconsin, Morgan Kaufmann (1998)

    Google Scholar 

  16. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vašíček, Z., Slaný, K. (2012). Efficient Phenotype Evaluation in Cartesian Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds) Genetic Programming. EuroGP 2012. Lecture Notes in Computer Science, vol 7244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29139-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29139-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29138-8

  • Online ISBN: 978-3-642-29139-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics