Skip to main content

Long-Term Variations of the Solar Supergranulation Size According to the Observations in CaIIK Line

  • Conference paper
  • First Online:
The Sun: New Challenges

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 30))

Abstract

This work contains analysis of distinctive size of chromospheric cells Kodaikanal (1907–1999) and Medon (1983–2010). At first the contrast of chromospheric grid was enlarged on image, by means of subtraction of the gradient from the solar disc intensity. This analysis was performed with the help of balanced wavelet transformation. It was discovered that distinctive size of chromospheric cells is close to 36Mm but it has variations,in the phase of solar activity ∼1, 2Mm maximal size of the cell can be seen as a rule, in ∼1, 5 year after maximum of the solar activity. There is a positive correlation (R = 0, 83) between the size of the chromospheric cells in maximum and the amplitude of the following activity cycle. Thus, the size of the supergranulation is connected with the solar activity and is ahead of it ∼8, 8 of a year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Priest E. R.: Solar magneto-hydrodynamics. D. Reidel Publishing company, Dordrecht, Boston (1984)

    Google Scholar 

  2. Hart, A. B.:Motions in the Sun at the photospheric level. VI. Large-scale motions in the equatorial region. MNRAS 116, 38, (1956)

    Google Scholar 

  3. Leighton, R.B., Noyes, R.W., Simon, G.W.: Velocity Fields in the Solar Atmosphere. I. Preliminary Report, Astrophysical Journal, 135, 474 (1962)

    Google Scholar 

  4. November, L. J., Toomre, J., Gebbie, K. B., Simon, G. W.: The detection of mesogranulation on the sun, Astrophysical Journal Letters, 245, 123–126 (1981)

    Google Scholar 

  5. Simon, G. W.; Weiss, N. O.: Supergranules and the Hydrogen Convection Zone, Z. Astrophys., 69, 435 (1968)

    Google Scholar 

  6. Hathaway, D. H.; Beck, J. G.; Bogart, R. S.; Bachmann, K. T.; Khatri, G.; Petitto, J. M.; Han, S.; Raymond, J.: The Photospheric Convection Spectrum, Solar Physics, 193, 299–312 (2000)

    Google Scholar 

  7. Williams, P. E.; Pesnell, W. D.: Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24, Solar Physics, 270, 125–136 (2011)

    Google Scholar 

  8. Hagenaar, H. J., Schrijver, C. J., Title, A. M.: The Distribution of Cell Sizes of the Solar Chromospheric Network, Astrophysical Journal, 481, 988 (1997)

    Google Scholar 

  9. Rieutord, M., Rincon, F.: The Sun’s Supergranulation, Living Reviews in Solar Physics, 7 (2010)

    Google Scholar 

  10. McIntosh, S. W., Leamon, R. J., Hock, R. A., Rast, M. P.; Ulrich, R. K.: Observing Evolution in the Supergranular Network Length Scale During Periods of Low Solar Activity, Astrophysical Journal Letters, 730, L3 (2011)

    Google Scholar 

  11. DeRosa, M.L., Toomre, J.: Evolution of Solar Supergranulation, Astrophys. J., 616, 1242–1260 (2004)

    Google Scholar 

  12. Meunier N., Rieutord, M.: Supergranules over the solar cycle, Astron. Astrophys., 488, 1109–1115 (2008)

    Google Scholar 

  13. Meunier, N., Roudier, T., Tkaczuk, R.: Are supergranule sizes anti-correlated with magnetic activity?, Astron. Astrophys., 466, 1123–1130 (2007)

    Google Scholar 

  14. Tlatov, A.G., Pevtsov, A.A. , Singh, J.: A New Method of Calibration of Photographic Plates from Three Historic Data Sets, Solar Phys. 255, 239–251 (2009)

    Google Scholar 

  15. Canny, J.: A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8, 679–698 (1986)

    Google Scholar 

  16. Rieutord, M., Roudier, T., Rincon, F., Malherbe, J.-M., Meunier, N., Berger, T. and Frank, Z.: On the power spectrum of solar surface flows, Astron. Astrophys., 512, A4 (2010)

    Google Scholar 

  17. Simon, G. W.; Leighton, R. B.: Velocity Fields in the Solar Atmosphere. III. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields, Astrophys. J. 140, 1120, (1964)

    Google Scholar 

  18. Foster G.: Wavelets for period analysis of unevenly samples time series. Astronomical Journal, 112, 1709–1729 (1996)

    Google Scholar 

Download references

Acknowledgements

The work was supported by Russian Foundation for Basic Research and Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Tlatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tlatov, A.G. (2012). Long-Term Variations of the Solar Supergranulation Size According to the Observations in CaIIK Line. In: Obridko, V., Georgieva, K., Nagovitsyn, Y. (eds) The Sun: New Challenges. Astrophysics and Space Science Proceedings, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29417-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29417-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29416-7

  • Online ISBN: 978-3-642-29417-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics