Skip to main content

Sustainable Biodiesel Production Using Wastewater Streams and Microalgae in South Africa

  • Chapter
  • First Online:
Chemistry for Sustainable Development in Africa
  • 907 Accesses

Abstract

The diminishing petroleum reserves in the world call for sustainable use of cheaply and readily available substrates such as wastewater streams for biomass and lipid production by microalgae. Treated wastewater is rich in macronutrients, such as nitrates and phosphates, and can therefore be used as a substrate for microalgal cultivation in open raceway ponds. The chemistry and composition of treated wastewater is of significance since it is made up of a wide range of compounds that support microalgal growth. The use of raceway pond technology utilizing wastewater streams feed is a new phenomenon that provides much needed phytoremediation of the wastewater as well as facilitating microalgal mass production. Macronutrient utilization by the microalgae justifies the application of treated wastewater as a sustainable raw material for renewable bioenergy production. The operational parameters in the raceway pond such as light intensity, photoperiod, pH, nutrients, salinity, and temperature are carefully optimized for maximal biomass and lipid yield. The biomass and lipid produced using the raceway pond system undergoes downstream processing in order to get the final product. The lipids are converted via transesterification to produce algae biodiesel. Other biologically active compounds and novel phytochemicals can also be derived from microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anandraj A, Perissinotto R, Nozais C (2008) The recovery of microalgal production and biomass in a South African temporarily—open/closed estuary, following mouth breaching. Estuar Coast Shelf Sci 79:599–606

    Article  Google Scholar 

  2. Anandraj A, Perissinotto R, Nozais C (2007) A comparative study of microalgal production in a marine versus a river-dominated temporarily open/closed estuary, South Africa. Estuar Coast Shelf Sci 73:768–780

    Article  Google Scholar 

  3. Bare WFR, Jones NB, Middlebrooks EJ (1975) Algae removal using dissolved air flotation. J Water Pollut Control 47(1):153–169

    CAS  Google Scholar 

  4. Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69

    Article  CAS  Google Scholar 

  5. Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, UK

    Google Scholar 

  6. Moser Bryan R (2009) Biodiesel production, properties, and feedstocks. In Vitro Cell. Dev Biol Plant 45:229–266. doi:10.1007/s11627-009-9204-z

    Article  CAS  Google Scholar 

  7. Camacho Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  CAS  Google Scholar 

  8. Chen W, Zhang Q, Dai S (2009) Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa. J Appl Phycol 21:701–706

    Article  CAS  Google Scholar 

  9. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  10. Costa JAV, Colla LM, Filho PD (2003) Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Z Naturforsch 58:76–80

    CAS  Google Scholar 

  11. Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31(7):1701–1707

    Article  CAS  Google Scholar 

  12. de-Bashan LE, Moreno M, Hernandez JP, Bashaan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilised in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Article  CAS  Google Scholar 

  13. Demirbas A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120

    Article  CAS  Google Scholar 

  14. Demirbas A (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manage 43:2349–2356

    Article  CAS  Google Scholar 

  15. Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non catalytic supercritical alcohol transesterifications and other methods: a survey. Energ Convers Manage 44:2093–2109. doi:10.1016/S0196-8904(02)00234-0

    Article  CAS  Google Scholar 

  16. Demirbas A (2008) Production of biodiesel from tall oil. Energy Sour Part A 30:1896–1902

    Article  CAS  Google Scholar 

  17. Demirbas A (2009) Production of biodiesel from algae oils. Energy Sour Part A 31:163–168. doi:10.1080/15567030701521775

    Article  CAS  Google Scholar 

  18. Desmorieux H, Decaen N (2006) Convective drying of spirulina in thin layer. J Food Eng 66(4):497–503

    Article  Google Scholar 

  19. Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzymat 30:125–129

    Article  CAS  Google Scholar 

  20. Eyster C (1958) Chloride Effect on the Growth of Chlorella pyrenoidosa. Nature 181:1141–1142

    Article  CAS  Google Scholar 

  21. Falkowski PG, Wyman K, Ley AC, Mauzerall DC (1986) Relationship of steady-state photosynthesis to fluorescence in eucaryotic algae. Biochim Biophys Acta 849:183–192

    Article  CAS  Google Scholar 

  22. Folkman Y, Wachs AM (1970) Filtration of Chlorella through Dune-Sand. Proc Am Soc Civil Eng, J Sanit Eng Div 96:675–690

    Google Scholar 

  23. Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil. JAOCS 63:1375–1380

    Article  CAS  Google Scholar 

  24. Furuta S, Matsuhashi H, Arata K (2004) Biodiesel fuel production with solid super acid catalysis in fixed bed reactor under atmospheric pressure. Catal Commun 5:721–723

    Article  CAS  Google Scholar 

  25. Gernaey KV, van Loosdrecht MCM, Henze M, Lind M, Jorgensen SB (2004) Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environ Model Softw 19:763–783

    Article  Google Scholar 

  26. Green diesel (2009) http://www.green-diesel.co.za/info_standards.htm. Accessed 20 Oct 2009

  27. Grima (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. JAOCS 71(9):955–959

    Article  Google Scholar 

  28. Grima ME, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  Google Scholar 

  29. Grima ME, Acién Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  CAS  Google Scholar 

  30. Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598

    Article  CAS  Google Scholar 

  31. Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 70:249–253

    Article  CAS  Google Scholar 

  32. Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110

    CAS  Google Scholar 

  33. Hama S, Yamaji H, Kaieda M, Oda M, Kondo A, Fukuda H (2004) Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem Eng J 21:155–160

    Article  CAS  Google Scholar 

  34. Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Elservier Academic press, London

    Google Scholar 

  35. Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  Google Scholar 

  36. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  37. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  38. Kaplan D, Richmond AE, Dubinsky Z, Aaronson S (1986) Algal Nutrition. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press Inc, USA

    Google Scholar 

  39. Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065. doi:10.1016/j.fuel.2005.01.016

    Article  CAS  Google Scholar 

  40. Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS, Urbana

    Book  Google Scholar 

  41. Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Article  CAS  Google Scholar 

  42. Kong Q, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  Google Scholar 

  43. Koopman B, Lincoln EP (1983) Autoflotation of algae from high-rate pond effluents. Agric Wastes 5(4):231–246

    Article  Google Scholar 

  44. Krawczyk T (1996) Biodiesel—alternative fuel makes inroads but hurdles remain. Inform 7:801–829

    Google Scholar 

  45. Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Article  Google Scholar 

  46. Kromkamp J, Peene J (1999) Estimation of phytoplankton photosynthesis and nutrient limitation in the Eastern Scheldt estuary using variable fluorescence. Aquat Ecol 33:101–104

    Article  CAS  Google Scholar 

  47. Chung Kyong Hwan, Kim Jin, Lee Ki-Young (2009) Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts. Biomass Bioenergy 33(1):155–158

    Article  CAS  Google Scholar 

  48. Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce abcarotene rich powder. J Ind Microbiol Biotechnol 20(2):82–85

    Article  CAS  Google Scholar 

  49. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotech Prog 24(4):815–820

    CAS  Google Scholar 

  50. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  51. Lima SAC, Raposo MFJ, Castro PML, Morais RM (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38:97–102

    Article  CAS  Google Scholar 

  52. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  53. MacIntyre HL, Cullen JJ (1996) Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San Antonio Bay. Tex Mar Ecol Prog Ser 145:245–268

    Article  Google Scholar 

  54. Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311

    Article  CAS  Google Scholar 

  55. Masojidek J, Koblizek M, Torzillo G (2004) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 20–39

    Google Scholar 

  56. Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  57. Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka LJ, Borowitzka MA (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 395–414

    Google Scholar 

  58. Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manage 88:437–447

    Article  CAS  Google Scholar 

  59. Mulaku WO, Nyanchanga EN (2004) Dissolved air flotation process for algae removal in surface water treatment in Kenya. J Civil Eng Res Pract 1(2):27–38

    Google Scholar 

  60. Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20:1079–1085

    Article  Google Scholar 

  61. Mutanda T, Karthikeyan S, Mustapha S, Bux F (2010) The utilisation of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella sp. under batch conditions. Biomass Bioenergy (in press)

    Google Scholar 

  62. Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Dry Technol 25:37–48

    Article  CAS  Google Scholar 

  63. Noue J, Laliberte G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  64. Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    Article  CAS  Google Scholar 

  65. Nurdogan Y, Oswald WJ (1996) Tube settling rate of high-rate pond algae. Water Sci Technol 33:229–241

    CAS  Google Scholar 

  66. Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E, Fukuda H (2004) Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem Eng J 23:45–51

    Article  Google Scholar 

  67. Olivier S, Scragg AH, Morrison J (2003) The effect of chlorophenols on the growth of Chlorella VT-1. Enzym Microb Technol 32:837–842

    Article  CAS  Google Scholar 

  68. Oswald WJ, Lee EW, Adan B, Yao KH (1978) New wastewater treatment method yields a harvest of saleable algae. WHO Chron 32:348–350

    CAS  Google Scholar 

  69. Paul PFM, Wise WS (1971) The principle of gas extraction. Mills Boon, London

    Google Scholar 

  70. Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgal biomass drying by a simple solar device. Int J Solar Energy 18(4):303–311

    Article  Google Scholar 

  71. Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119

    Article  Google Scholar 

  72. Ramdhani N, Bux F (2007) Functional characterization of heterotrophic denitrifying bacteria in activated sludge. S Afr J Sci 103:113–116

    CAS  Google Scholar 

  73. Ramesh D, Samapathrajan A, Venkatachalam P (2005) Pilot biodiesel plant for vegetable oils. Periyar J Res Dev 3(1):15–19

    Google Scholar 

  74. Ramesh D, Samapathrajan A, Joshua Davidson S (2005) Fuel properties of palm oil and its biodiesel production. Periyar J Res Dev 2(3):25–29

    Google Scholar 

  75. Reid EE (1911) Studies in esterification. IV. The interdependence of limits as exemplified in the transformation of esters. Am Chem J 45:479–516

    CAS  Google Scholar 

  76. Republic of South Africa (1998) National Water Act. Act No 36 of 1998

    Google Scholar 

  77. Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford

    Google Scholar 

  78. Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: Characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioengng 69:440–449

    Article  CAS  Google Scholar 

  79. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  Google Scholar 

  80. Serodio J, Vieira S, Cruz S, Barroso F (2005) Short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. Mar Biol 146:903–914

    Article  CAS  Google Scholar 

  81. Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban Bus. Final Report NREL/SR-580-24089. National Renewable Energy Laboratory, Golden, Colorado

    Google Scholar 

  82. Shelef GA, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review report. Solar Energy Research Institute, Golden Colorado, SERI/STR-231-2396

    Google Scholar 

  83. Shieh CJ, Liao HF, Lee CC (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour Technol 88:103–106

    Article  CAS  Google Scholar 

  84. Simmons MS, Sivaborvorn K (1979) Effects of chlorinated organics from wastewater treatment on algal growth. Bull Environ Contam Toxicol 23:766–773

    Article  CAS  Google Scholar 

  85. Sidat M, Kasan HC, Bux F (1999) Laboratory scale investigation of biological phosphate removal from municipal wastewater. Water SA 25(4):459–462

    CAS  Google Scholar 

  86. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. J Renew Sustain Energy Rev 4:111–133

    Article  CAS  Google Scholar 

  87. Teixeira MR, Rosa MJ (2006) Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa. Part 1: the key operating conditions. Sep Purif Technol 52(1):84–94

    Article  CAS  Google Scholar 

  88. Torzillo G, Bernardini P, Masojidek J (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effects on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). J Phycol 34:504–510

    Article  CAS  Google Scholar 

  89. Valderramma LT, Campo CMD, Rodriguez CM, de-Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemma minuscule. Water Res 36:4185–4192

    Article  Google Scholar 

  90. Van Gerpen J, Shanks B, Pruszko R, Clements D and Knothe G (2004) Biodiesel production technology. National Renewable Energy Laboratory. 1617 Cole Boulevard, Golden, CO. Paper contract No. DE-AC36-99-GO10337

    Google Scholar 

  91. Venkataraman LV (1978) New possibility for microalgae production and utilisation in India. Arch Hydrobiol Beih 11:199–210

    CAS  Google Scholar 

  92. Vonshak A (1997) Spirulina: growth, physiology and biochemisty. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 43–65

    Google Scholar 

  93. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  Google Scholar 

  94. Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20

    Article  CAS  Google Scholar 

  95. Wijffels RH (2007) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26(1):26–31

    Article  Google Scholar 

  96. Miao Xiaoling, Li Rongxiu, Yao Hongyan (2009) Effective acid-catalyzed transesterification for biodiesel production. Energy Convers Manage 50(10):2680–2684

    Article  CAS  Google Scholar 

  97. Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  98. Zhang Y, Dub MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240

    Article  CAS  Google Scholar 

  99. Zhou W, Boocock DBG (2006) Phase behavior of the base-catalyzed transesterification of soybean oil. JAOCS 83:1041–1045. doi:10.1007/s11746-006-5160-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mutanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mutanda, T., Ramesh, D., Anandraj, A., Bux, F. (2013). Sustainable Biodiesel Production Using Wastewater Streams and Microalgae in South Africa. In: Gurib-Fakim, A., Eloff, J. (eds) Chemistry for Sustainable Development in Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29642-0_4

Download citation

Publish with us

Policies and ethics