Skip to main content

8.1 The Great Oxidation Event

  • Chapter
  • First Online:
Reading the Archive of Earth’s Oxygenation

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The Fennoscandian Arctic Russia-Drilling Early Earth Project (FAR-DEEP) was designed to capture the sequence of environmental upheavals associated with the establishment of an aerobic biosphere in the Palaeoproterozoic as represented in several palaeobasins and greenstone belts in the Fennoscandian Shield; the Pechenga Greenstone Belt is one of them (Fig. 8.1). From weathering and deposition on Archaean basement overlain by evidence for “Huronian Glaciation,” through early evidence for atmospheric oxygen in the form of redbeds and highly oxidised lavas which themselves are coincident with evidence for massive perturbations of the global carbon cycle expressed through substantial shifts in δ13C, and ending with the deposition of high organic C rocks and strong evidence for modern-style early diagenetic environments with abundant sulphate reduction and diagenetic concretions, the FAR-DEEP cores preserve an invaluable archive of the “Great Oxidation Event” or GOE (Holland 2002, 2006) and related environmental consequences. This transition, known for decades to roughly coincide with the Archaean – Proterozoic boundary, is marked not only by the appearance of “red beds,” reddish sedimentary rocks, typically sand and silt particles coated in ferric oxides that were deposited in terrestrial environments, but also with the retention of Fe in ancient soil profiles or palaeosols and the end of uranium ore accumulation in detrital rocks as uranium-bearing conglomerates (reviews by Knoll and Holland 1995; Canfield 2005; Holland 2006). Other changes, especially the abrupt cessation (but episodic recurrence) of banded iron formation and an increase in the Fe(III)/Fe(II) ratio in shales (Bekker et al. 2003), reflect on the oxidation state of the oceans and diagenetic environments, not the atmosphere per se, and thus require additional consideration before they can be used as a proxy for atmospheric oxygen. As discussed below, the discovery of mass-independent fractionation of the sulphur isotopes exclusively in Archaean sedimentary rocks (Farquhar et al. 2000) provided the direct proxy for atmospheric oxygenation during the transition from the Archaean to the Proterozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amelin YuV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Palaeoproterozoic continental rifting. Precambrian Res 75:31–46

    Article  Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    Article  Google Scholar 

  • Baker AJ, Fallick AE (1989) Evidence from Lewisian limestones for isotopically heavy carbon in two thousand million year old sea water. Nature 337:352–354

    Article  Google Scholar 

  • Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879

    Article  Google Scholar 

  • Bau M, Romer R, Luders V, Beukes NJ (1999) Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): implications for the composition of Palaeoproterozoic seawater and ‘dating’ the increase of oxygen in the Precambrian atmosphere. Earth Planet Sci Lett 174:43–57

    Article  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285

    Article  Google Scholar 

  • Bekker A, Holland HD, Young GM, Nesbitt HW (2003) Fe2O3/FeO ratio in average shale through time: a reflection of the stepwise oxidation of the atmosphere. Abstr Program Annu Meeting Geol Soc Am 34:83

    Google Scholar 

  • Bekker A, Holland HD, Wang P-L, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of the atmospheric oxygen. Nature 427: 117–120

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis, a theoretical approach. Princeton University Press, New Jersey, p 256

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons R (1999) Archaean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  Google Scholar 

  • Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archaean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335

    Article  Google Scholar 

  • Buick R, Dunlop JSR (1990) Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277

    Article  Google Scholar 

  • Cameron EM (1982) Sulphate and sulphate reduction in early Precambrian oceans. Nature 296:145–148

    Article  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  Google Scholar 

  • Canfield DC, Steward FJ, Thamdrup B, de Brabandere L, Dalsgaard T, DeLong EF, Revsbech NP, Uloa O (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–1378

    Article  Google Scholar 

  • Canil D (1999) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta 63:557–572

    Article  Google Scholar 

  • Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–843

    Article  Google Scholar 

  • Claire MW, Catling DC, Zahnle KJ (2006) Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4:239–269

    Article  Google Scholar 

  • Cornell DH, Schutte SS, Eglington BL (1996) The Ongeluk basaltic andesite formation in Griqualand West, South Africa: submarine alteration in a 2222 Ma Proterozoic sea. Precambrian Res 79:101–123

    Article  Google Scholar 

  • Delano JW (2001) Redox history of the Earth’s interior: implications for the origin of life. Orig Life Evol Biosph 31:311–341

    Article  Google Scholar 

  • Dobson DP, Brodholt JP (2005) Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature 434:371–374

    Article  Google Scholar 

  • Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology 34:437–440

    Article  Google Scholar 

  • Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for NeoArchaean aerobiosis. Earth Planet Sci Lett 273:323–331

    Article  Google Scholar 

  • Fallick AE, Melezhik VA, Simonson BM (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 169–188

    Chapter  Google Scholar 

  • Fallick A, Melezhik V, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with Banded Iron Formations. In: Neves L et al (eds) Modelação de Sistemas Geológicos. Univeridade de Coimbra, Portugal, pp 57–71

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–758

    Article  Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–254

    Article  Google Scholar 

  • Gauthier-Lafaye F, Weber F (2003) Natural nuclear fission reactors: time constraints for occurrence and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Res 120:81–101

    Article  Google Scholar 

  • Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the great oxidation. Nature 443:683–686

    Article  Google Scholar 

  • Grassineau NV, Abell P, Appel PWU, Lowry D, Nisbet EG (2006) Early life signatures in sulfur and carbon isotopes, from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe greenstone belts. Geol Soc Am Mem 198:33–52

    Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archaean-Proterozoic transition. Geology 37:299–402

    Article  Google Scholar 

  • Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298: 2372–2374

    Article  Google Scholar 

  • Halevy I, Johnston DT, Schrag DP (2010) Explaining the structure of the Archaean mass-independent sulphur isotope record. Science 329:204–207

    Article  Google Scholar 

  • Hannah JL, Stein HJ, Zimmerman A, Yang G, Markey RJ, Melezhik VA (2006) Precise 2004 ± 9 Ma Re‐Os age for Pechenga black shale: comparison of sulfides and organic material. Geochim Cosmochim Acta 70:A228

    Google Scholar 

  • Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Geol Surv Finland Bull 367:1–192

    Google Scholar 

  • Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc B 361:931–950

    Article  Google Scholar 

  • Hedges SB, Kumar S (2009) The timetree of life. United Kingdom, Oxford, p 551

    Google Scholar 

  • Hedges SB, Chen H, Kumar S, Wang DY-C, Thompson AS, Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1:4

    Article  Google Scholar 

  • Heinrichs TK, Reimer TO (1977) A sedimentary barite deposit from the Archean Fig Tree Group of the Barberton Mountain Land (South Africa). Econ Geol 72: 1426–1441

    Article  Google Scholar 

  • Hickman AH (1973) The North Pole barite deposits, Pilbara Goldfield. Ann Rept Geol Surv W Aust 1972:57–60

    Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York, p 351

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Article  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B 361:903–915

    Article  Google Scholar 

  • Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55

    Article  Google Scholar 

  • Karhu JA (1993) Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geol Surv Finland Bull 371:1–87

    Google Scholar 

  • Karhu JA, Holland HD (1996) Carbon isotopes and rise of atmospheric oxygen. Geology 24:867–879

    Article  Google Scholar 

  • Kasting JF, Holland HD, Kump LR (1992) Atmospheric evolution: the rise of oxygen. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 159–165

    Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the case for a reduced Archaean atmosphere. J Geol 101:245–257

    Article  Google Scholar 

  • Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R (2007) Late Archaean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    Article  Google Scholar 

  • Kirschvink JL, Kopp RE (2008) Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos Trans R Soc B 363:2755–2765

    Article  Google Scholar 

  • Knoll AH, Holland HD (1995) Oxygen and Proterozoic evolution: an update. In: Board on Earth Sciences and Resources (ed) Effects of past global change on life. National Research Council, Washington, DC, pp 21–33

    Google Scholar 

  • Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW, Mojzsis SJ, Rouxel OJ, Barley ME, Rosìere C, Fralick PW, Kump LR, Bekker A (2011) Aerobic bacterial pyrite oxidation and acid rock drainage during the great oxidation event. Nature 478:369–373

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136

    Article  Google Scholar 

  • Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011) Structure of the section of the Onega structure based on the Onega parametric drillhole. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (Geology, tectonics, deep structure and minerageny). Institute of Geology, Karelian Research Centre of RAS, Petrozavodsk, pp 172–189 (in Russian)

    Google Scholar 

  • Kump LR, Barley ME (2007) Continental tectonics, increased subaerial volcanism and the rise of atmospheric oxygen. Nature 448:1033–1036

    Article  Google Scholar 

  • Kump LR, Kasting JF, Barley ME (2001) Rise of atmospheric oxygen and the “upside-down” Archaean mantle. Geochem Geophys Geosyst 2: Paper number 2000GC000114

    Google Scholar 

  • Lambert IB, Donnelly TH, Dunlop JSR, Groves DI (1978) Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276:808–810

    Article  Google Scholar 

  • Lesher CM (1999) Regional stratigraphic, structural, and metamorphic setting of the East-Central Cape Smith Belt. In: Lesher CM (ed) Komatiitic Peridotite-Hosted Ni-Cu-(PGE) Deposits of the Raglan Area, Cape Smith belt, New QuÕbec, vol 2, Guide Series. Mineral Exploration Research Centre/Laurentian University, Sudbury, pp 17–34

    Google Scholar 

  • Li ZXA, Lee CTA (2004) The constancy of upper mantle fO2 through time inferred from the V/Sc ratios in basalts. Earth Planet Sci Lett 228:483–493

    Article  Google Scholar 

  • Melezhik VA, Fallick AE (1996) A widespread positive δ13Ccarb anomaly at around 2.33-2.06 Ga on the Fennoscandian shield: a paradox? Terra Nova 8:141–157

    Article  Google Scholar 

  • Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (1999) Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth Sci Rev 48:71–120

    Article  Google Scholar 

  • Melezhik VA, Fallick AE, Hanski EJ, Kump LR, Lepland A, Prave AR, Strauss H (2005) Emergence of the aerobic biosphere during the Archaean-Proterozoic transition: challenges of future research. GSA Today 15:4–11

    Article  Google Scholar 

  • Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658

    Article  Google Scholar 

  • Morozov AF, Hahaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Commun Russ Acad Sci 435:230–233 (in Russian)

    Google Scholar 

  • Müller SG, Krapez B, Barley ME, Fletcher IR (2005) Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: new insights from in situ SHRIMP dating of baddeleyite from mafic intrusions. Geology 33:577–580

    Article  Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulphur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212

    Article  Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archaean sediments: strong evidence for an anoxic Archaean atmosphere. Astrobiology 2:27–41

    Article  Google Scholar 

  • Philippot P, van Zuilen M, Lepot K, Thomazo C, Farquhar J, van Kranendonk MJ (2007) Early Archaean mircroorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    Article  Google Scholar 

  • Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA 104:15099–15104

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  Google Scholar 

  • Reimer TO (1980) Archean sedimentary barite deposits of the Swaziland supergroup barites and the evolution of the atmosphere

    Google Scholar 

  • Reinhard CT, Raiswell R, Scott C, Anbar AD, Lyons TW (2009) A late Archaean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326:713–716

    Article  Google Scholar 

  • Reuschel M, Melezhik VA, Whitehouse MJ, Lepland A, Fallick AE, Strauss H (2012) Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. Precambrian Geol 192–195:78–88

    Article  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Shen Y, Farquhar J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archaean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391

    Article  Google Scholar 

  • Tsikos H, Matthews A, Erel Y, Moore JM (2010) Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin. Earth Planet Sci Lett 298:125–134

    Article  Google Scholar 

  • Ueno Y, Ono S, Rumble D, Maruyamas S (2008) Quadruple sulfur isotope analysis of c. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archaean. Geochim Cosmochim Acta 72:5675–5691

    Article  Google Scholar 

  • Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124

    Article  Google Scholar 

  • Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47

    Article  Google Scholar 

  • Welander PA, Coleman ML, Sessions AL, Summons RE, Newman DK (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc Natl Acad Sci 107:8537–8542

    Article  Google Scholar 

  • Wille M, Kramers JD, Nagler TF, Beukes NJ, Schroder S, Meisel Th, Lacassie JP, Voegelin AR (2007) Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Comsochim Acta 71:2417–2435

    Article  Google Scholar 

  • Zahnle K, Claire M, Catling D (2006) The loss of mass-independent fractionation in sulphur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4:271–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee R. Kump .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kump, L.R., Fallick, A.E., Melezhik, V.A., Strauss, H., Lepland, A. (2013). 8.1 The Great Oxidation Event. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_11

Download citation

Publish with us

Policies and ethics