Skip to main content

Experimental setup

  • Chapter
  • First Online:
Optical Cooling Using the Dipole Force

Part of the book series: Springer Theses ((Springer Theses))

  • 650 Accesses

Abstract

The mechanisms described in the previous chapters, especially mirror-mediated cooling and external cavity cooling, present several exciting avenues not only for theoretical, but also for experimental, research. This chapter presents an overview of the vacuum and laser systems employed by our group in our ongoing investigations into these mechanisms and into MOT miniaturisation and atomic trap arrays. In the first section I describe the physical makeup of the vacuum and laser systems; the second section describes the novel trap geometry and imaging process employed in our system.

Each piece, or part, of the whole nature is always an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. [...] The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth”.

R. Feynman, The Feynman Lectures on Physics (1964)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All authors contributed equally to this paper. Hamid Ohadi and Matthew Himsworth performed the measurements; AX and HO processed the data and wrote the paper. Tim Freegarde supervised the project at all stages.

References

  1. Clifford, M. A., Lancaster, G. P. T., Mitchell, R. H., Akerboom, F.& Dholakia, K. Realization of a mirror magneto-optical trap. J. Mod. Opt. 48, 1123 (2001).

    ADS  Google Scholar 

  2. Drexhage, K. H., Kuhn, H.& Schäfer, F. P. Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsen Phys. Chem. 72, 329 (1968).

    Google Scholar 

  3. Eschner, J., Raab, C., Schmidt-Kaler, F.& Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495 (2001).

    Article  ADS  Google Scholar 

  4. Bartlett, P. N., Birkin, P. R.& Ghanem, M. A. Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun. 1671 (2000).

    Google Scholar 

  5. Bartlett, P. N., Baumberg, J. J., Birkin, P. R., Ghanem, M. A.& Netti, M. C. Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres. Chem. Mater. 14, 2199 (2002).

    Article  Google Scholar 

  6. Casimir, H. B. G.& Polder, D. The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 73, 360 (1948).

    Article  ADS  MATH  Google Scholar 

  7. Scheel, S.& Buhmann, S. Y. Casimir-polder forces on moving atoms. Phys. Rev. A 80, 042902 (2009).

    Article  ADS  Google Scholar 

  8. Wilson, M. A., Bushev, P., Eschner, J., Kaler, S. F., Becher, C., Blatt, R.& Dorner, U. Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror. Phys. Rev. Lett. 91, 213602 (2003).

    Article  ADS  Google Scholar 

  9. Coyle, S., Netti, M. C., Baumberg, J. J., Ghanem, M. A., Birkin, P. R., Bartlett, P. N.& Whittaker, D. M. Confined plasmons in metallic nanocavities. Phys. Rev. Lett. 87, 176801 (2001).

    Article  ADS  Google Scholar 

  10. Kimball Physics, inc. Spherical Octagon, Catalogue (2010).

    Google Scholar 

  11. Himsworth, M. Coherent Manipulation of Ultracold Rubidium. Ph.D. thesis, University of Southampton (2009).

    Google Scholar 

  12. Ohadi, H., Himsworth, M., Xuereb, A.& Freegarde, T. Magneto-optical trapping and background-free imaging for atoms near nanostructured surfaces. Opt. Express 17, 23003 (2009).

    Article  ADS  Google Scholar 

  13. Raab, E. L., Prentiss, M., Cable, A., Chu, S.& Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987).

    Article  ADS  Google Scholar 

  14. Shimizu, F., Shimizu, K.& Takuma, H. Four-beam laser trap of neutral atoms. Opt. Lett. 16, 339 (1991).

    Article  ADS  Google Scholar 

  15. Emile, O., Bardou, F., Salomon, C., Laurent, P., Nadir, A.& Clairon, A. Observation of a new magneto-optical trap. Europhys. Lett. 20, 687 (1992).

    Article  ADS  Google Scholar 

  16. Lee, K. I., Kim, J. A., Noh, H. R.& Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 21, 1177 (1996).

    Article  ADS  Google Scholar 

  17. Reichel, J., Hänsel, W.& Hänsch, T. W. Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83, 3398 (1999).

    Article  ADS  Google Scholar 

  18. Folman, R., Krüger, P., Cassettari, D., Hessmo, B., Maier, T.& Schmiedmayer, J. Controlling cold atoms using nanofabricated surfaces: Atom chips. Phys. Rev. Lett. 84, 4749 (2000).

    Article  ADS  Google Scholar 

  19. Pollock, S., Cotter, J. P., Laliotis, A.& Hinds, E. A. Integrated magneto-optical traps on a chip using silicon pyramid structures. Opt. Express 17, 14109 (2009).

    Article  ADS  Google Scholar 

  20. Nez, F. Optical frequency determination of the hyperfine components of the 5S\(_{1/2}\)-5D\(_{3/2}\) two-photon transitions in rubidium. Opt. Commun. 102, 432 (1993).

    Article  ADS  Google Scholar 

  21. Ovchinnikov, Y. B., Shul’ga, S. V.& Balykin, V. I. An atomic trap based on evanescent light waves. J. Phys. B 24, 3173 (1991).

    Article  ADS  Google Scholar 

  22. Schultz, B. E., Ming, H., Noble, G. A.& van Wijngaarden, W. A. Measurement of the Rb D2 transition linewidth at ultralow temperature. Eur. Phys. J. D 48, 171 (2008).

    Article  ADS  Google Scholar 

  23. Corwin, K. L., Lu, Z. T., Hand, C. F., Epstein, R. J.& Wieman, C. E. Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. Appl. Opt. 37, 3295 (1998).

    Article  ADS  Google Scholar 

  24. Sheludko, D. V., Bell, S. C., Anderson, R., Hofmann, C. S., Vredenbregt, E. J. D.& Scholten, R. E. State-selective imaging of cold atoms. Phys. Rev. A 77, 033401 (2008).

    Article  ADS  Google Scholar 

  25. Vernier, A., Franke-Arnold, S., Riis, E.& Arnold, A. S. Enhanced frequency up-conversion inrb vapor. Opt. Express 18, 17020 (2010).

    Article  ADS  Google Scholar 

  26. Wu, S., Plisson, T., Brown, R. C., Phillips, W. D.& Porto, J. V. Multiphoton magnetooptical trap. Phys. Rev. Lett. 103, 173003 (2009).

    Article  ADS  Google Scholar 

  27. Autler, S. H.& Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955).

    Article  ADS  Google Scholar 

  28. Wohlleben, W., Chevy, F., Madison, K.& Dalibard, J. An atom faucet. Eur. Phys. J. D 15, 237 (2001).

    Article  ADS  Google Scholar 

  29. Lewandowski, H. J., Harber, D. M., Whitaker, D. L.& Cornell, E. A. Simplified system for creating a Bose-Einstein condensate. J. Low Temp. Phys. 132, 309 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Xuereb .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xuereb, A. (2012). Experimental setup. In: Optical Cooling Using the Dipole Force. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29715-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29715-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29714-4

  • Online ISBN: 978-3-642-29715-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics