Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 416 Accesses

Abstract

Understanding the high energy Universe has been a long standing goal of astro-particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\gamma \gamma \rightarrow e^+e^-\) will begin to limit the photon horizon at \(10^{14}\) eV.

  2. 2.

    The energy spectrum produced by supernovae shock fronts is \(\gamma \sim 2\). However, when combined with the confinement time in the Galaxy, a spectrum of \(\gamma \sim 2.6\) is produced.

  3. 3.

    1 erg = \(10^{-7}\) J.

  4. 4.

    It is also possible that the observed high energy cut-off is caused by the end of the energy spectrum that UHECR sources are able to generate.

  5. 5.

    The radiation length is the length over which a particle will lose all but 1/\(e\) of its energy.

  6. 6.

    The critical energy is the energy at which an electron’s rate of energy loss due to ionisation is equal to the rate of energy loss due to bremsstrahlung radiation. Ionisation interactions do not create any new particles, while bremsstrahlung energy losses result in a photon, which may proceed to pair produce, thus adding to the total number of particles in the shower. Therefore, at \(E<E_c\), particles will not be added to the shower.

References

  1. J. Linsley, Phys. Rev. Lett. 10, 146 (1963)

    Article  ADS  Google Scholar 

  2. The HESS Collaboration, J.A. Hinton, New Astron. Rev. 48, 331 (2004), [astro-ph/0403052]

    Google Scholar 

  3. J. Holder et al., Status of the VERITAS observatory, in American Institute of Physics Conference Series, vol. 1085, (2008) pp. 657–660, [astro-ph/0810.0474]

    Google Scholar 

  4. The CTA Consortium, astro-ph/1008.3703

    Google Scholar 

  5. V. Hess, Nobel Lectures, Physics 1922–1941 (Elsevier, Amsterdam, 1965)

    Google Scholar 

  6. B.T. Cleveland et al., Astrophys. J. 496, 505 (1998)

    Article  ADS  Google Scholar 

  7. K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987)

    Article  ADS  Google Scholar 

  8. J.J. Beatty, S. Westerhoff, Ann. Rev. Nucl. Part. Sci. 59, 319 (2009)

    Article  ADS  Google Scholar 

  9. E. Fermi, Phys. Rev. 75, 1169 (1949)

    Article  ADS  MATH  Google Scholar 

  10. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference vol. 11 (1977), 132–137

    Google Scholar 

  11. A.R. Bell, Mon. Notices R. Astron. Soc. 182, 147 (1978)

    ADS  Google Scholar 

  12. R.D. Blandford, J.P. Ostriker, Astrophys. J. 221, L29 (1978)

    Article  ADS  Google Scholar 

  13. A.M. Hillas, Ann. Rev. Astron. Astrophys. 22, 425 (1984)

    Article  ADS  Google Scholar 

  14. K. Kotera, A.V. Olinto, Ann. Rev. Astron. Astrophys. 49, 119 (2011)

    Article  ADS  Google Scholar 

  15. M. Takeda et al., Astropart. Phys. 19, 447 (2003), [astro-ph/0209422]

    Google Scholar 

  16. V. Berezinsky, M. Kachelrieß, A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997)

    Article  ADS  Google Scholar 

  17. V. Berezinsky, A. Vilenkin, Phys. Rev. Lett. 79, 5202 (1997)

    Article  ADS  Google Scholar 

  18. The Pierre Auger Collaboration, J. Abraham et al., Phys. Lett. B685, 239 (2010), [astro-ph/1002.1975]

    Google Scholar 

  19. The High Resolution FlyGs Eye Collaboration, R.U. Abbasi et al., Phys. Rev. Lett. 100, 101101 (2008)

    Google Scholar 

  20. A.D. Erlykin, A.W. Wolfendale, J. Phys. G31, 1475 (2005), [astro-ph/0510016]

    Google Scholar 

  21. E. Waxman, Phys. Rev. Lett. 75, 386 (1995), [astro-ph/9505082]

    Google Scholar 

  22. R.J. Protheroe, A.P. Szabo, Phys. Rev. Lett. 69, 2885 (1992)

    Article  ADS  Google Scholar 

  23. The Pierre Auger Collaboration, P. Abreu et al., Astropart. Phys. 34, 314 (2010), [astro-ph/1009.1855]

    Google Scholar 

  24. L.J. Watson, D.J. Mortlock, A.H. Jaffe, astro-ph/1010.0911

    Google Scholar 

  25. The Pierre Auger Collaboration, J. Abraham et al., astro-ph/0906.2319

    Google Scholar 

  26. The Pierre Auger Collaboration, J. Abraham et al., Nucl. Instrum. Meth. A523, 50 (2004)

    Google Scholar 

  27. J.V. Jelley et al., Nature 205, 327 (1965)

    Google Scholar 

  28. F.D. Kahn, I. Lerche, R. Soc. Lond. Proc. Ser. A 289, 206 (1966)

    Article  ADS  Google Scholar 

  29. D.J. Fegan, D.M. Jennings, Nature 223, 722 (1969)

    Article  ADS  Google Scholar 

  30. D.J. Fegan, P.P. O’Neill, Nature 241, 126 (1973)

    ADS  Google Scholar 

  31. The LOPES Collaboration, H. Falcke et al., Nature 435, 313 (2005), [astro-ph/0505383]

    Google Scholar 

  32. The CODELAMA Collaboration, D. Ardouin et al., Astropart. Phys. 31, 192 (2009), [astro-ph/0901.4502]

    Google Scholar 

  33. K. Greisen, Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  34. G.T. Zatsepin, V.A. Kuzmin, JETP Lett. 4, 78 (1966)

    ADS  Google Scholar 

  35. The Pierre Auger Collaboration, J. Abraham et al., Phys. Rev. Lett. 104, 091101 (2010), [astro-ph/1002.0699]

    Google Scholar 

  36. The High Resolution FlyGs Eye Collaboration, R.U. Abbasi et al., Astropart. Phys. 32, 53 (2009), [astro-ph/0904.4500]

    Google Scholar 

  37. The High-Resolution Fly’s Eye Collaboration, R.U. Abbasi et al., Phys. Rev. Lett. 104, 161101 (2010), [astro-ph/0910.4184]

    Google Scholar 

  38. V.S. Beresinsky, G.T. Zatsepin, Phys. Lett. B 28, 423 (1969)

    Article  ADS  Google Scholar 

  39. E. Waxman, J.N. Bahcall, Phys. Rev. D 59, 023002 (1999), [hep-ph/9807282]

    Google Scholar 

  40. J.N. Bahcall, E. Waxman, Phys. Rev. D 64, 023002 (2001), [hep-ph/9902383]

    Google Scholar 

  41. R. Engel, D. Seckel, T. Stanev, Phys. Rev. D 64, 093010 (2001), [astro-ph/0101216]

    Google Scholar 

  42. D. Hooper, A. Taylor, S. Sarkar, Astropart. Phys. 23, 11 (2005), [astro-ph/0407618]

    Google Scholar 

  43. D. Hooper, D. Morgan, E. Winstanley, Phys. Rev. D 72, 065009 (2005), [hep-ph/0506091]

    Google Scholar 

  44. R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic, Astropart. Phys. 5, 81 (1996), [hep-ph/9512364]

    Google Scholar 

  45. R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic, Phys. Rev. D 58, 093009 (1998), [hep-ph/9807264]

    Google Scholar 

  46. A. Connolly, R.S. Thorne, D. Waters, hep-ph/1102.0691

    Google Scholar 

  47. The Pierre Auger Collaboration, J. Abraham et al., Phys. Rev. D 79, 102001 (2009)

    Google Scholar 

  48. F. Halzen, S.R. Klein, Rev. Sci. Instrum. 81, 081101 (2010), [astro-ph/1007.1247]

    Google Scholar 

  49. The KM3NeT Collaboration, M. de Jong, Nucl. Instrum. Meth. A623, 445 (2010)

    Google Scholar 

  50. The AMANDA Collaboration, E. Andres et al., Astropart. Phys. 13, 1 (2000), [astro-ph/9906203]

    Google Scholar 

  51. The ANTARES Collaboration, J. Aguilar et al., Phys. Lett. B 696, 16 (2011), [1011.3772]

    Google Scholar 

  52. The ACoRNE Collaboration, S. Danaher, J. Phys. Conf. Ser. 81, 012011 (2007)

    Google Scholar 

  53. The AMADEUS Collaboration, R. Lahmann, Nucl. Instrum. Methods A604, S158 (2009), [astro-ph/0901.0321], * Brief entry *

    Google Scholar 

  54. V. Aynutdinov et al., astro-ph/0910.0678

    Google Scholar 

  55. N. Kurahashi, J. Vandenbroucke, G. Gratta, Phys. Rev. D 82, 073006 (2010), [hep-ex/1007.5517]

    Google Scholar 

  56. S. Boeser et al., astro-ph/0807.4676

    Google Scholar 

  57. G.A. Askaryan, JETP 14, 441 (1962)

    Google Scholar 

  58. G.A. Askaryan, JETP 21, 658 (1965)

    ADS  Google Scholar 

  59. J. Alvarez-Muniz, C. James, R. Protheroe, E. Zas, Astropart. Phys. 32, 100 (2009)

    Article  ADS  Google Scholar 

  60. D. Saltzberg et al., Phys. Rev. Lett. 86, 2802 (2001), [hep-ex/0011001]

    Google Scholar 

  61. P.W. Gorham et al., Phys. Rev. D 72, 023002 (2005), [astro-ph/0412128]

    Google Scholar 

  62. The ANITA Collaboration, P.W. Gorham et al., Phys. Rev. Lett. 99, 171101 (2007), [hep-ex/0611008]

    Google Scholar 

  63. L.D. Landau, I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953)

    MATH  Google Scholar 

  64. L.D. Landau, I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 735 (1953)

    MATH  Google Scholar 

  65. A.B. Migdal, Phys. Rev. 103, 1811 (1956)

    Article  ADS  MATH  Google Scholar 

  66. J. Alvarez-Muniz, A. Romero-Wolf, E. Zas, Phys. Rev. D 81, 123009 (2010), [astro-ph/1002.3873]

    Google Scholar 

  67. N.G. Lehtinen, P.W. Gorham, A.R. Jacobson, R.A. Roussel-Dupré, Phys. Rev. D 69, 013008 (2004)

    Article  ADS  Google Scholar 

  68. P.W. Gorham et al., Phys. Rev. Lett. 93, 041101 (2004)

    Article  ADS  Google Scholar 

  69. The RICE Collaboration, I. Kravchenko et al., Astropart. Phys. 19, 15 (2003), [astro-ph/0112372]

    Google Scholar 

  70. P. Allison et al., astro-ph/1105.2854

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Joseph Mottram .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mottram, M.J. (2012). Ultra-High Energy Astro-Particle Physics. In: A Search for Ultra-High Energy Neutrinos and Cosmic-Rays with ANITA-2. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30032-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30032-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30031-8

  • Online ISBN: 978-3-642-30032-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics