Skip to main content

Lateralization in Lizards: Evidence of Presence in Several Contexts

  • Chapter
  • First Online:
Behavioral Lateralization in Vertebrates

Abstract

Recent research has provided information about the right-eye mediation of predatory tasks in several taxa of ectotherms, while antipredatory and exploratory behaviours are generally mediated by the left eye. This type of visual specialisation allows individuals to hunt and to remain vigilant at the same time. However, very little is known about such specialisation in sauropsids. In this study, we report on several different experiments which have investigated the presence of lateralization in the lacertid Podarcis muralis lizard, for predatory, antipredatory, and exploratory behaviours. We found right-eye control in prey detection in a T-maze and in a detour test. In contrast, in escape behaviour from a simulated predator, we found that lizards significantly preferred to escape to the right, and once at a safe distance, to turn their head back towards the left in order to review the source of the threat, thereby supporting a left-eye mediated processing of antipredatory stimuli. In experiments investigating the exploration of a new environment, a strong left-eye bias was found once again. Finally, with individual lizards tested in experimental situations of both predation and exploration, we confirmed once again a right-eye visual system for controlling predatory cues and a left-eye visual system for controlling exploratory cues, supporting the hypothesis that cerebral specialisation of functions allows the simultaneous performance of important tasks as part of the daily routine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LI:

Laterality Index

References

  • Andrew RJ (1983) Lateralization of cognitive function in higher vertebrates, with special reference to the domestic chick. In: Ewert J-P, Capranica RR, Ingle D (eds) Advances in vertebrate neuroethology. Plenum Press, New York

    Google Scholar 

  • Andrew RJ, Dharmaretnam M (1993) Lateralization and strategies of viewing in the domestic chick. In: Zeigler HP, Bischof HJ (eds) Vision, brain and behaviour in birds. MIT Press, Cambridge

    Google Scholar 

  • Avery RA (1993) Experimental analysis of lizard pause-travel movement: pause increase probability of prey capture. Amphibia-Reptilia 14:423–427

    Article  Google Scholar 

  • Avery RA, Mueller CF, Jones SM, Smith JA, Bond DJ (1987) Speeds and movement patterns of European lacertid lizards. J Herpetol 21:324–329

    Article  Google Scholar 

  • Bonati B, Csermely D (2011) Complementary lateralization in the exploratory and predatory behaviour of the common wall lizard (Podarcis muralis). Laterality 16:462–470

    Article  PubMed  Google Scholar 

  • Bonati B, Csermely D, Romani R (2008) Lateralization in the predatory behaviour of the common wall lizard (Podarcis muralis). Behav Process 79:171–174

    Article  CAS  Google Scholar 

  • Bonati B, Csermely D, López P, Martín J (2010) Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis). Behav Brain Res 207:1–6

    Article  PubMed  Google Scholar 

  • Braña F (2003) Morphological correlates of burst speed and field movement patterns: the behavioural adjustment of locomotion in wall lizards (Podarcis muralis). Biol J Linn Soc 80:135–146

    Article  Google Scholar 

  • Byrne RA, Kuba M, Griebel U (2002) Lateral asymmetry of eye use in Octopus vulgaris. Anim Behav 64:461–468

    Article  Google Scholar 

  • Cooper WE Jr (2008) Visual monitoring of predators: occurrence, cost and benefit for escape. Anim Behav 76:1365–1372

    Article  Google Scholar 

  • Csermely D, Bonati D, Romani R (2010) Lateralization in a detour test in the lizard Podarcis muralis. Laterality 15:535–547

    Article  PubMed  CAS  Google Scholar 

  • Csermely D, Bonati B, López P, Martín J (2011) Is the Podarcis muralis lizard left-eye lateralized in exploring a new environment? Laterality 16:240–255

    Article  PubMed  Google Scholar 

  • Dadda M, Bisazza A (2006) Does brain asymmetry allow efficient performance of simultaneous tasks? Anim Behav 72:523–529

    Article  Google Scholar 

  • Deckel AW (1995) Laterality of aggressive response in Anolis. J Exp Zool 272:194–200

    Article  Google Scholar 

  • Dukas R (2004) Causes and consequences of limited attention. Brain Behav Evol 63:197–210

    Article  PubMed  Google Scholar 

  • Dukas R, Kamil AC (2000) The cost of limited attention in blue jays. Behav Ecol 11:502–506

    Article  Google Scholar 

  • Fernàndez-Juricic E, Erichsen JT, Kacelnik A (2004) Visual perception and social foraging in birds. Trends Ecol Evol 19:25–31

    Article  PubMed  Google Scholar 

  • Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game theoretical analysis of population structure. Proc R Soc Lond B 271:853–857

    Article  Google Scholar 

  • Ghirlanda S, Frasnelli E, Vallortigara G (2009) Intraspecific competition and coordination in the evolution of lateralization. Phil Trans R Soc B 364:861–866

    PubMed  Google Scholar 

  • Ingle D (1973) Selective choice between double prey objects by frogs. Brain Behav Evol 7:127–144

    Article  PubMed  CAS  Google Scholar 

  • Karenina K, Giljov A, Vladimir Baranov, Osipova L, Krasnova V, Malashichev Y (2010) Visual laterality of calf-mother interactions in wild whales. PLoS ONE 5:1–6

    Article  Google Scholar 

  • Levy J (1977) The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann NY Acad Sci 299:264–272

    Article  PubMed  CAS  Google Scholar 

  • Lippolis G, Joss JMP, Rogers LJ (2009) Australian lungfish (Neoceratodus forsteri): a missing link in the evolution of complementary side biases for predator avoidance and prey capture. Brain Behav Evol 73:295–303

    Article  PubMed  CAS  Google Scholar 

  • MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left & right brain. Sci Am 301:60–67

    Article  PubMed  Google Scholar 

  • Martín J, López P, Bonati B, Csermely D (2010) Lateralization when monitoring predators in the wild: a left eye control in the common wall lizard (Podarcis muralis). Ethology 116:1226–1233

    Article  Google Scholar 

  • McAdam AG, Kramer DL (1998) Vigilance as a benefit of intermittent locomotion in small mammals. Anim Behav 55:109–117

    Article  PubMed  Google Scholar 

  • McGrew WC, Marchant LF (1999) Laterality of hand use pays off in foraging success for wild chimpanzees. Primates 40:509–513

    Article  Google Scholar 

  • Metcalfe NB, Huntingford FA, Thorpe JE (1987) Predation risk impairs diet selection in juvenile salmon. Anim Behav 35:931–933

    Article  Google Scholar 

  • Pascual A, Huang KL, Neveu J, Preat T (2004) Brain asymmetry and long-term memory. Nature 427:605–606

    Article  PubMed  CAS  Google Scholar 

  • Reimchen TE, Spoljaric MA (2011) Right paw foraging bias in wild black bear (Ursus americanus kermodei). Laterality 16:471–478. doi:10.1080/1357650X.2010.485202

    Google Scholar 

  • Robins A (2006) Lateralized visual processing in anurans: new vistas though ancient eyes. In: Malashichev YB, Deckel AW (eds) Behavioral and morphological asymmetries in vertebrates. Landes Bioscience, Georgetown

    Google Scholar 

  • Robins A, Chen P, Beazley LD, Dunlop SA (2005) Lateralized predatory responses in the ornate dragon lizard (Ctenophorus ornatus). Behaviour 16:849–852

    Google Scholar 

  • Rogers LJ (2002) Advantages and disadvantages of lateralization. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rogers LJ, Vallortigara G (2008) From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS ONE 3:1–5

    Google Scholar 

  • Rogers LJ, Zappia JV, Bullock SP (1985) Testosterone and eye-brain asymmetry for copulation in chickens. Experientia 41:1447–1449

    Article  CAS  Google Scholar 

  • Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Proc R Soc Lond B 271:S420–S422

    Article  Google Scholar 

  • Röll B (2001) Retina of Bouton’s skink (reptilia, scincidae): visual cells, fovea, and ecological constraints. J Comp Neurol 436:487–496

    Article  PubMed  Google Scholar 

  • Sherry DF, Schachter DL (1987) The evolution of multiple memory systems. Psychol Rev 94:439–454

    Article  Google Scholar 

  • Tommasi L (2009) Mechanisms and functions of brain and behavioural asymmetries. Philos Trans Soc B 364:855–859

    Google Scholar 

  • Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through left and right animals’ perceptual world. Brain Lang 73:189–219

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Bisazza A (2002) How ancient is brain lateralization? In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge

    Google Scholar 

  • Vallortigara G, Rogers JL (2005) Survival with asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633

    PubMed  Google Scholar 

  • Vallortigara G, Rogers JL, Bisazza A (1999) Possibile evolutionary origins of cognitive brain lateralization. Brain Res Rev 30:164–175

    Article  PubMed  CAS  Google Scholar 

  • Ventolini N, Ferrero EA, Sponza S, Della Chiesa A, Zucca P, Vallortigara G (2005) Laterality in the wild: preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Anim Behav 69:1077–1084

    Article  Google Scholar 

Download references

Acknowledgments

We thank both the Parma Provincial Administration for the permission to capture lizards and the “El Ventorillo” MNCN Field Station for using their facilities. We are also grateful to Andrew Robins for the valuable comments and English revision to an earlier draft. The studies summarised in this chapter were supported by the European Community (1st Programme Structuring the European Research Area, under SYNTHESYS, at the Museo Nacional de Ciencias Naturales [CSIC]), by the Spanish Ministerio de Ciencia e Innovación project MCI-CGL2008-02119/BOS, by the Italian Ministero dell’Istruzione, Università e Ricerca, and by doctoral grants from the University of Parma to B.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Bonati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonati, B., Csermely, D. (2013). Lateralization in Lizards: Evidence of Presence in Several Contexts. In: Csermely, D., Regolin, L. (eds) Behavioral Lateralization in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30203-9_3

Download citation

Publish with us

Policies and ethics