Skip to main content

A Bayesian Hierarchical Space-Time Model for Significant Wave Height

  • Chapter
  • First Online:
Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 2))

Abstract

This chapter presents a Bayesian hierarchical space-time model for significant wave height. This type of models was selected based on a comprehensive literature survey and the framework allows modeling of complex dependence structures in space and time. Such models may incorporate physical features and prior knowledge, yet remain intuitive and easily interpreted. The model presented in this chapter has been fitted to significant wave height data with different temporal resolutions for an area in the North Atlantic Ocean. The various components of the model will be outlined, and the results from applying the model on monthly and daily data, as well as monthly maximum data, will be discussed. A few different model alternatives have been investigated and long-term trends in the data have been identified with all model alternatives. Overall, the identified trends are in reasonable agreement and also agree fairly well with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data available from URL: http://data-portal.ecmwf.int/data/d/era40_daily/

  2. 2.

    Private communication with Dr. Andreas Sterl, KNMI.

  3. 3.

    The following parametrization of the inverse gamma distribution will be used:

    $$ X \ \sim IG(\alpha , \beta ) \Rightarrow f(x) = \frac{\beta ^\alpha }{\Gamma (\alpha )}\left( \frac{1}{x}\right) ^{\alpha + 1}e^{-\beta / x} \text { for } x > 0 $$
  4. 4.

    Note that the credible bands in [29] were wrongly calculated, but not the mean.

References

  1. Aggoun, L.: Kalman filtering of a space-time markov random field. Math. Comput. Model. 36, 1193–1209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babanin, A.V., Chalikov, D., Young, I., Savelyev, I.: Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J. Fluid Mech. 644, 433–463 (2010)

    Article  MATH  Google Scholar 

  4. Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  5. Caires, S., Sterl, A.: 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Clim. 18, 1032–1048 (2005)

    Article  Google Scholar 

  6. Caires, S., Sterl, A.: A new nonparametric method to correct model data: application to significant wave height from ERA-40 re-analysis. J. Atmospheric Ocean. Technol. 22, 443–459 (2005)

    Article  Google Scholar 

  7. Caires, S., Swail, V.: Global wave climate trend and variability analysis. In: Preprints of 8th International Workshop on Wave Hindcasting and Forecasting (2004)

    Google Scholar 

  8. Caires, S., Swail, V.R., Wang, X.L.: Projection and analysis of extreme wave climate. J. Clim. 19, 5581–5605 (2006)

    Article  Google Scholar 

  9. Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–533 (2006)

    Article  MathSciNet  Google Scholar 

  10. Grabemann, I., Weisse, R.: Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn. 58, 199–212 (2008)

    Article  Google Scholar 

  11. Guedes Soares, C., Ferreira, A., Cunha, C.: Linear models of the time series of significant wave height on the Southwest Coast of Portugal. Coast. Eng. 29, 149–167 (1996)

    Article  Google Scholar 

  12. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  13. Konig, T., Lehner, S., Schulz-Stellenfleth, J.: Global analysis of a 2 year ERS-2 wavemode dataset over the oceans. In: Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2007). IEEE International (2007)

    Google Scholar 

  14. Kushnir, Y., Cardone, V., Greenwood, J., Cane, M.: The recent increase in north atlantic wave heights. J. Clim. 10, 2107–2113 (1997)

    Article  Google Scholar 

  15. Lim, J., Wang, X., Sherman, M.: An adjustment for edge effects using an augmented neighborhood model in the spatial auto-logistic model. Comput. Stat. Data Anal. 51, 3679–3688 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meinhold, R.J., Singpurwalla, N.D.: Understanding the kalman filter. Am. Statist. 37, 123–127 (1983)

    Google Scholar 

  17. Natvig, B., Tvete, I.F.: Bayesian hierarchical space-time modeling of earthquake data. Methodol. Comput. Appl. Probab. 9, 89–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Robert, C.P., Casella, G.: Monte Carlo statistical methods, 2nd edn. Springer, Heidelberg (2004)

    Google Scholar 

  19. Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwarz, G.: Estimating the dimension of a model. Annal. Stat. 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  21. Scotto, M., Guedes Soares, C.: Modelling the long-term time series of significant wave height with non-linear threshold models. Coast. Eng. 40, 313–327 (2000)

    Article  Google Scholar 

  22. Smith, R.L.: Environmental statistics. University of North Carolina (2001). http://www.stat.unc.edu/postscript/rs/envnotes.pdf. Accessed 21 Oct 2010

  23. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64, 583–639 (2002)

    Article  MATH  Google Scholar 

  24. Sterl, A., Caires, S.: Climatology, variability and extrema of ocean waves: the web-based KNMI/ERA-40 wave atlas. Int. J. Climatol. 25, 963–977 (2005)

    Article  Google Scholar 

  25. Toffoli, A., Babanin, A., Onorato, M., Waseda, T.: Maximum steepness of oceanic waves: field and laboratory experiments. Geophys. Res. Lett. 37, L05, 603 (2010)

    Google Scholar 

  26. Tvete, I.F., Natvig, B.: A comparison of an analytical approach and a standard simulation approach in Bayesian forecasting applied to monthly data from insurance of companies. Methodol. Comput. Appl. Probab. 4, 95–113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., Da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., Van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm E. Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.F., Morcrette, J.J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Vitebro, P., Woolen, J.: The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005)

    Google Scholar 

  28. Vanem, E.: Long-term time-dependent stochastic modelling of extreme waves. Stoch. Env. Res. Risk Assess. 25, 185–209 (2011)

    Article  Google Scholar 

  29. Vanem, E., Huseby, A.B., Natvig, B.: A Bayesian-hierarchical space-time model for significant wave height data. In: Proceedings of the 30th International Conference on Ocean, Offshore Mechanics and Arctic Engineering (OMAE 2011). American Society of Mechanical Engineers (ASME) (2011)

    Google Scholar 

  30. Vanem, E., Huseby, A.B., Natvig, B.: A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic. Stoch. Env. Res. Risk Assess. 26, 609–632 (2012)

    Article  Google Scholar 

  31. Vanem, E., Huseby, A.B., Natvig, B.: A stochastic model in space and time for monthly maximum significant wave height. In: P. Abrahamsen, R. Haugen, O. Kolbjørnsen (eds.) Geostatistics Oslo 2012, pp. 505–517. Springer, Heidelberg (2012)

    Google Scholar 

  32. Vanem, E., Huseby, A.B., Natvig, B.: Bayesian hierarchical spatio-temporal modelling of trends and future projections in the ocean wave climate with a CO\(_2\) regression component. Environ. Ecol. Stat. (in press) (2013)

    Google Scholar 

  33. Vanem, E., Walker, S.E.: Identifying trends in the ocean wave climate by time series analyses of significant wave height data. Ocean Eng. 61, 148–160 (2012)

    Article  Google Scholar 

  34. Wang, X.J., Zwiers, F.W., Swail, V.R.: North Atlantic ocean wave climate change scenarios for the twenty-first century. J. Clim. 17, 2368–2383 (2004)

    Article  Google Scholar 

  35. Wang, X.L., Swail, V.R.: Climate change signal and uncertainty in projections of ocean wave heights. Clim. Dyn. 26, 109–126 (2006)

    Article  Google Scholar 

  36. West, M., Harrison, J.: Bayesian forecasting and dynamic models, 2nd edn. Springer, Heidelberg (1997)

    Google Scholar 

  37. Wikle, C.K.: Hierarchical models in environmental science. Int. Stat. Rev. 71, 181–199 (2003)

    Article  MATH  Google Scholar 

  38. Wikle, C.K., Berliner, L.M., Cressie, N.: Hierarchical Bayesian space-time models. Environ. Ecol. Stat. 5, 117–154 (1998)

    Article  Google Scholar 

  39. Young, I., Zieger, S., Babanin, A.: Global trends in wind speed and wave height. Science 332, 451–455 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Vanem .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vanem, E. (2013). A Bayesian Hierarchical Space-Time Model for Significant Wave Height. In: Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height. Ocean Engineering & Oceanography, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30253-4_3

Download citation

Publish with us

Policies and ethics