Skip to main content

Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas

  • Conference paper
  • First Online:
Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 33))

  • 828 Accesses

Abstract

Prominences or filaments are cool clouds of partially ionized plasma living in the solar corona. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic (MHD) waves. Existing observational evidence points out that these oscillatory motions are damped in short spatial and temporal scales by some still not well known physical mechanism(s). Since prominences are partially ionized plasmas, a potential mechanism able to damp these oscillations could be ion-neutral collisions. Here, we will review the work done on the effects of partial ionization on MHD waves in prominence plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Lin, O. Engvold, L. Rouppe van der Voort, J. Wiik, T. Berger, Solar Phys. 226, 239 (2005). DOI 10.1007/s11207-005-6876-3

    Google Scholar 

  2. P. Heinzel, U. Anzer, Astrophys. J. Lett. 643, L65 (2006). DOI 10. 1086/504980

    Google Scholar 

  3. Y. Lin, Space Sci. Rev. (2011). DOI 10.1007/s11214-010-9672-9

    Google Scholar 

  4. O. Engvold, in New Perspectives on Solar Prominences, ASP Conference Series, vol. 150, ed. by D. Webb, B. Schmieder, D. Rust (Astronomical Society of the Pacific, San Francisco, 1998), ASP Conference Series, vol. 150, pp. 23–31

    Google Scholar 

  5. Y. Lin. Magnetic field topology inferred from studies of fine threads in solar filaments (2005)

    Google Scholar 

  6. O. Engvold, in Waves & Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology, IAU Symposia, vol. 247, ed. by R. Erdélyi, C. Mendoza-Briceño (Cambridge University Press, Cambridge; New York, 2008), IAU Symposia, vol. 247, pp. 152–157. DOI 10.1017/ S1743921308014816

    Google Scholar 

  7. S. Martin, Y. Lin, O. Engvold, Solar Phys. 250, 31 (2008). DOI 10.1007/s11207-008-9194-8

    Google Scholar 

  8. Y. Lin, S. Martin, O. Engvold, in Subsurface and Atmospheric Influences on Solar Activity, ASP Conference Series, vol. 383, ed. by R. Howe, R. Komm, K. Balasubramaniam, G. Petrie (Astronomical Society of the Pacific, San Francisco, 2008), ASP Conference Series, vol. 383, pp. 235–242

    Google Scholar 

  9. J. Leroy, in Proceedings of the Japan-France Seminar on Solar Physics, ed. by F. Moriyama, J. Henoux (Nihon Gakujutsu Shinkokai and CNRS, Tokyo, 1980), p. 155

    Google Scholar 

  10. V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Bréchot, Solar Phys. 154, 231 (1994)

    Google Scholar 

  11. V. Bommier, J. Leroy, in New Perspectives on Solar Prominences, ASP Conference Series, vol. 150, ed. by D. Webb, B. Schmieder, D. Rust (Astronomical Society of the Pacific, San Francisco, 1998), ASP Conference Series, vol. 150, pp. 434–438

    Google Scholar 

  12. Y. Lin, R. Soler, O. Engvold, J. Ballester, Ø. Langangen, R. Oliver, L. Rouppe van der Voort, Astrophys. J. 704, 870 (2009). DOI 10.1088/ 0004-637X/704/1/870

    Google Scholar 

  13. Z. Yi, O. Engvold, Solar Phys. 134, 275 (1991)

    Google Scholar 

  14. Z. Yi, O. Engvold, S. Keil, Solar Phys. 132, 63 (1991)

    Google Scholar 

  15. Y. Lin, O. Engvold, L. Rouppe van der Voort, M. van Noort, Solar Phys. 246, 65 (2007). DOI 10.1007/s11207-007-0402-8

    Google Scholar 

  16. I. Arregui, J.L. Ballester, Space Sci. Rev. 158, 169 (2011). DOI 10. 1007/s11214-010-9648-9

    Google Scholar 

  17. J. Terradas, R. Molowny-Horas, E. Wiehr, H. Balthasar, R. Oliver, J. Ballester, Astron. Astrophys. 393, 637 (2002). DOI 10.1051/ 0004-6361:20020967

    Google Scholar 

  18. R. Oliver, J. Ballester, Solar Phys. 206, 45 (2002). DOI 10.1023/A: 1014915428440

    Google Scholar 

  19. S. Patsourakos, J.C. Vial, Solar Phys. 208, 253 (2002)

    Google Scholar 

  20. M. Goossens, An Introduction to Plasma Astrophysics and Magnetohydrodynamics, Astrophysics and Space Science Library, vol. 294 (Kluwer, Dordrecht; Norwell, MA, 2003)

    Google Scholar 

  21. P. Forteza, R. Oliver, J. Ballester, M. Khodachenko, Astron. Astrophys. 461, 731 (2007). DOI 10.1051/0004-6361:20065900

    Google Scholar 

  22. B. Pandey, M. Wardle, Mon. Not. R. Astron. Soc. 385, 2269 (2008). DOI 10.1111/j.1365-2966.2008.12998.x

    Google Scholar 

  23. B. De Pontieu, P. Martens, H. Hudson, Astrophys. J. 558, 859 (2001). DOI 10.1086/322408

    Google Scholar 

  24. S. James, R. Erdélyi, B. De Pontieu, Astron. Astrophys. 406, 715 (2003). DOI 10.1051/0004-6361:20030685

    Google Scholar 

  25. M. Khodachenko, T. Arber, H. Rucker, A. Hanslmeier, Astron. Astrophys. 422, 1073 (2004). DOI 10.1051/0004-6361:20034207

    Google Scholar 

  26. J. Leake, T. Arber, M. Khodachenko, Astron. Astrophys. 442, 1091 (2005). DOI 10.1051/0004-6361:20053427

    Google Scholar 

  27. P. Forteza, R. Oliver, J. Ballester, Astron. Astrophys. 492, 223 (2008). DOI 10.1051/0004-6361:200810370

    Google Scholar 

  28. R. Soler, R. Oliver, J. Ballester, Astron. Astrophys. 512, A28 (2010). DOI 10.1051/0004-6361/200913478

    Google Scholar 

  29. P. Gouttebroze, N. Labrosse, Astron. Astrophys. 503, 663 (2009). DOI 10.1051/0004-6361/200811483

    Google Scholar 

  30. R. Soler, R. Oliver, J. Ballester, Astrophys. J. 699, 1553 (2009). DOI 10.1088/0004-637X/699/2/1553

    Google Scholar 

  31. R. Soler, R. Oliver, J. Ballester, Astrophys. J. 707, 662 (2009). DOI 10.1088/0004-637X/707/1/662

    Google Scholar 

  32. R. Soler, R. Oliver, J. Ballester, Astrophys. J. 726 (2011). DOI 10. 1088/0004-637X/726/2/102

    Google Scholar 

  33. P. Edwin, B. Roberts, Solar Phys. 88, 179 (1983). DOI 10.1007/ BF00196186

    Google Scholar 

  34. M. Goossens, J. Terradas, J. Andries, I. Arregui, J. Ballester, Astron. Astrophys. 503, 213 (2009). DOI 10.1051/0004-6361/200912399

    Google Scholar 

  35. I. Arregui, J. Terradas, R. Oliver, J. Ballester, Astrophys. J. Lett. 682, L141 (2008). DOI 10.1086/591081

    Google Scholar 

  36. R. Soler, R. Oliver, J. Ballester, M. Goossens, Astrophys. J. Lett. 695, L166 (2009). DOI 10.1088/0004-637X/695/2/L166

    Google Scholar 

  37. R. Soler, J. Andries, M. Goossens, Astron.Astrophys. 537, A84 (2012)

    Google Scholar 

  38. R. Soler, I. Arregui, R. Oliver, J. Ballester, Astrophys. J. 722, 1778 (2010). DOI 10.1088/0004-637X/722/2/1778

    Google Scholar 

  39. J. Ballester, E. Priest, Astron. Astrophys. 225, 213 (1989)

    Google Scholar 

  40. M. Rempel, D. Schmitt, W. Glatzel, Astron. Astrophys. 343, 615 (1999)

    Google Scholar 

  41. A. Díaz, R. Oliver, J. Ballester, Astrophys. J. 580, 550 (2002). DOI 10.1086/343039

    Google Scholar 

  42. J. Terradas, I. Arregui, R. Oliver, J. Ballester, Astrophys. J. Lett. 678, L153 (2008). DOI 10.1086/588728

    Google Scholar 

  43. R. Soler, M. Goossens, Astron. Astrophys. 531 (2011). DOI 10.1051/ 0004-6361/201116536

    Google Scholar 

  44. I. Arregui, R. Soler, J.L. Ballester, A.N. Wright, Astron. Astrophys. 533, A60 (2011). DOI 10.1051/0004-6361/201117477

    Google Scholar 

Download references

Acknowledgements

RS acknowledges support from a Marie Curie Intra-European Fellowship within the European Commission 7th Framework Program (PIEF-GA-2010-274716). RS and JLB acknowledge financial support from MICINN and FEDER funds through grant AYA2011-22486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Soler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soler, R., Ballester, J.L. (2012). Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas. In: Leubner, M., Vörös, Z. (eds) Multi-scale Dynamical Processes in Space and Astrophysical Plasmas. Astrophysics and Space Science Proceedings, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30442-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30442-2_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30441-5

  • Online ISBN: 978-3-642-30442-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics