Skip to main content

3 The Interface Between Plants and Mycorrhizal Fungi: Nutrient Exchange, Signaling and Cell Organization

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

Mycorrhizas are mutualistic interactions that the majority of land plants establish with a heterogeneous group of soil fungi. Although the pattern of root colonization can be very diverse, one trait common to all mycorrhizal interactions is the appearance of an apoplastic compartment where the plant and fungal cell walls are strictly associated. This symbiotic interface, which includes the plasma membranes of both partners, is the site of major nutrient exchanges and represents the functional core of the symbiosis. Over the last 10 years, substantial advances have been made in our knowledge of many of the cellular and molecular mechanisms that underlie mycorrhizal associations. The advent of novel technologies, such as genome sequencing, high-throughput transcriptomics and in vivo confocal microscopy, has opened new ways to explore the hidden world of these fascinating subterranean symbioses. Here we propose a synopsis of the recent literature on the interactions between mycorrhizal fungi and their hosts, with particular focus on the intimate contact that develops between plant cells and fungal hyphae, in terms of molecular signaling, nutrient exchange and cell organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ané JM, Lévy J, Thoquet P, Kulikova O, de Billy F, Penmetsa V, Kim DJ, Debellé F, Rosenberg C, Cook DR, Bisseling T, Huguet T, Dénarié J (2002) Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization. Mol Plant Microbe Interact 15:110–118

    Article  Google Scholar 

  • Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst 139:8–15

    Article  Google Scholar 

  • Balestrini R, Cosgrove DJ, Bonfante P (2005) Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220:889–899

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Sillo F, Kohler A, Schneide G, Faccio A, Tisserant E, Martin F, Bonfante P (2012) Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Current Genetics 58:165–177

    Article  PubMed  CAS  Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–73

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Bruns TD, Weiß M, Sergio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835

    Article  Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Hock B (ed) The mycota IX. Fungal associations. Springer, Berlin, pp 45–91

    Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  Google Scholar 

  • Bonfante P, Requena N (2011) Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:1–7

    Article  Google Scholar 

  • Bonfante P, Scannerini S (1992) The cellular basis of plant–fungus interchanges in mycorrhizal associations. In: Allen M (ed) Functioning mycorrhizae. Chapman and Hall, New York, pp 65–101

    Google Scholar 

  • Bonfante P, Balestrini R, Genre A, Lanfranco L (2009) Establishment and functioning of arbuscular mycorrhizas. In: Deising H (ed) The mycota V, 2nd edn, Plant relationships. Springer, Berlin, pp 45–91

    Google Scholar 

  • Brachmann A, Parniske M (2006) The most widespread symbiosis on earth. PLoS Biol 4:e239

    Article  Google Scholar 

  • Bucher M, Wegmüller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507

    Article  PubMed  CAS  Google Scholar 

  • Bücking H, Hans R, Heyser W (2007) The apoplast of ectomycorrhizal roots—site of nutrient uptake and nutrient exchange between the symbiotic partners. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport and reactions. Springer, Berlin, pp 97–108

    Chapter  Google Scholar 

  • Dotzler N, Krings M, Taylor TN, Agerer R (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Prog 5:178–184

    Article  Google Scholar 

  • Durán A, Nombela C (2004) Fungal cell wall biogenesis: building a dynamic interface with the environment. Microbiology 150:3099–3103

    Article  PubMed  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev 25:68–72

    Article  Google Scholar 

  • Garcia-Garrido JM, Tribak M, Rejon-Palomares A, Ocampo JA, Garcia-Romera I (2000) Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. J Exp Bot 51:1443–1448

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Bonfante P (2010) The making of symbiotic cells in arbuscular mycorrhizal roots. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer, Dordrecht, pp 57–71

    Chapter  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Ivanov S, Fendrych M, Faccio A, Zársky V, Bisseling T, Bonfante P (2012) Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas. Plant Cell Physiol 53:244–55

    Article  PubMed  CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang YH, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9. doi:10.1186/1471-2229-9-10

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009a) Genome-wide reprogramming of regulatory networks transport cell wall synthesis and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    Article  PubMed  CAS  Google Scholar 

  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009b) A mycorrhizal specific ammonium transporter from Lotus japonicus acquires nitrogen. Plant Physiol 150:73–83

    Article  PubMed  CAS  Google Scholar 

  • Guimil S, Chang H, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    Article  PubMed  Google Scholar 

  • Guttenberg M (2000) Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta 211:299–304

    Article  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  PubMed  CAS  Google Scholar 

  • Humphrey TV, Bonetta DT, Goring DR (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68:8–18

    Article  PubMed  Google Scholar 

  • Leake JR (1994) Transley review no. 69: the biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR, Cameron DD, Beerling DJ (2008) Fungal fidelity in the myco- heterotroph-to-autotroph life cycle of Lycopodiaceae: a case of parental nurture? New Phytol 177:572–576

    Article  PubMed  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  PubMed  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Giraudet D, Formey D, Martinez EA, Driguez H, Becard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 69:58–63

    Article  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Blaycock L, Harrison MJ (2005) Expression of a xyloglucan endotransglucosylase/hydrolase gene Mt-XTH1 from Medicago truncatula is induced systemically in mycorrhizal roots. Gene 345:191–197

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Laurent P, de Carvalho D, Voiblet C, Balestrini R, Bonfante P, Tagu D (1999) Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius: identification, function, and expression in symbiosis. Fungal Genet Biol 27:161–174

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008a) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JPW (2008b) The long hard road to a completed Glomus intraradices genome. New Phytol 180:747–750

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM (2011) Genomes of obligate plant pathogens reveal adaptations for obligate parasitism. Proc Natl Acad Sci USA 108:8921–8922

    Article  PubMed  CAS  Google Scholar 

  • Nehls U (2003) Ectomycorrhizal development and function: transcriptome analysis. New Phytol 159:5–7

    Article  CAS  Google Scholar 

  • Novero M, Faccio A, Genre A, Stougaard J, Webb KJ, Mulder L, Parniske M, Bonfante P (2002) Dual requirement of the LjSym4 gene for the mycorrhizal development in epidermal cells and cortical cells of Lotus japonicus roots. New Phytol 154:741–749

    Article  CAS  Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754

    Article  PubMed  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Perotto S, Peretto R, Faccio A, Schubert A, Varma A, Bonfante P (1995) Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot 73:S557–S568

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Peterson RL, Bonfante P, Faccio A, Uetake Y (1996) The interface between fungal hyphae and orchid protocorm cells. Can J Bot 74:1861–1870

    Article  Google Scholar 

  • Peterson RL, Uetake Y, Zelmer C (1998) Fungal symbioses with orchid protocorms. Symbiosis 25:29–55

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH, Phillips F (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Ottawa

    Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    Article  PubMed  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Sattelmacher B, Horst WJ (2007) The apoplast of higher plants: compartment of storage, transport and reactions. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Scannerini S, Bonfante P (1983) Comparative ultra structural analysis of mycorrhizal associations. Can J Bot 61:917–943

    Article  Google Scholar 

  • Schuüssler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  PubMed  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defense responses in plants. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, DeWitt P, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    Article  PubMed  CAS  Google Scholar 

  • Tagu D, Martin F (1996) Molecular analysis of cell wall proteins expressed during the early steps of ectomycorrhiza development. New Phytol 133:73–85

    Article  CAS  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JP, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Raffaella Balestrini for kindly sharing her results and providing images of ectomycorrhizal roots and to Antonella Faccio for electron microscopy preparations. Contributions to this chapter have partially been funded by the Italian National project PRIN 2008, and by Regione Piemonte (CIPE-BioBITs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bonfante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Genre, A., Bonfante, P. (2012). 3 The Interface Between Plants and Mycorrhizal Fungi: Nutrient Exchange, Signaling and Cell Organization. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30826-0_3

Download citation

Publish with us

Policies and ethics