Skip to main content

Stable Conditions of Marine Gas Hydrate

  • Chapter
  • First Online:
Natural Gas Hydrates

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1858 Accesses

Abstract

Marine gas hydrate exists below the phase equilibrium boundary which is very sensitive to temperature and pressure. Investigations of the stable conditions can provide important information for gas hydrate development and utilization. In this chapter, we summarize the apparatus and the test methods used for gas hydrate stability condition experiments and discuss the experimental data and influencing factors in different systems (including pure water, seawater, artificial porous media, marine sediment). Meanwhile, the formation and dissociation behavior of gas hydrate in sediments is also investigated. Here, our research achievements of hydrate stable conditions combined with others can provide the basic theory and experimental testing technology of hydrate stability conditions for the safety development of natural gas hydrate resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kvenvolden KA. Methane hydrate–a major reservoir of carbon in the shallow geosphere? Chem Geol. 1988;71:41–51.

    Article  Google Scholar 

  2. Mei Donghai, Liao Jian, Wang Lukun. Determination and prediction of hydrate equilibrium formation conditions. J Chem Eng Chin Univ. 1997;11(3):113–6.

    Google Scholar 

  3. Sun Zhigao, Wang Ruzhu, Fan Shuanshi, et al. An advance in the research on natural gas hydrate. Nat Gas Ind. 2001;1:93–6.

    Google Scholar 

  4. Liu Changling, Ye Yuguang, Zhang Jian, et al. Experimental technology and methods of phase equilibrium study for gas hydrate. J Ocean Univ China. 2004;34(1):153–8.

    Google Scholar 

  5. Ye Yuguang, Zhang Jian, Diao Shaobo, et al. Experimental technique for marine gas hydrates. Mar Geol Quat Geol. 2003;23(1):119–23.

    Google Scholar 

  6. Li Dongliang, Yu Guobao, Tang Cuiping, et al. Experimental investigation on hydrate formation condition of gas field in North Shanxi. J Wuhan Univ Technol. 2005;27(10):40–2.

    Google Scholar 

  7. Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass. J Phys Chem B. 1999;103:3659–62.

    Article  Google Scholar 

  8. Uchida T, Ebinuma T, Takeya S, et al. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media. J Phys Chem B. 2002;106:820–6.

    Article  Google Scholar 

  9. Handa YP, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica gel pores. J Phys Chem. 1992;96(21):8599–603.

    Article  Google Scholar 

  10. Smith DH, Wilder JW, Seshadri K. Methane hydrate equilibria in silica gels with broad pore-size distributions. A I Ch E J. 2002;48:393–400.

    Article  Google Scholar 

  11. Wilder JW, Seshadri K, Smith DH. Resolving apparent contradictions in equilibrium measurements for clathrate hydrates in porous media. J Phys Chem B. 2001;105:9970.

    Article  Google Scholar 

  12. Seshadri K, Wilder JW, Smith DH. Measurements of equilibrium pressures and temperatures for propane hydrate in silica gels with different pore-size distributions. J Phys Chem B. 2001;105:2627–31.

    Article  Google Scholar 

  13. Zhang W, Wilder JW, Smith DH. Equilibrium pressures and temperatures for equilibria involving hydrate, free gas, and ice in porous media. In: Proceedings of the 4th International Conference on Gas Hydrates (ICGH4), Yokohama, Japan, May 19−23; 2002, p. 321−6.

    Google Scholar 

  14. Tohidi B, Burgass RW, Danesh A, et al. Improving the accuracy of gas hydrate dissociation point measurements. Ann N Y Acad Sci. 2000;912:924–31.

    Article  Google Scholar 

  15. Uchida T, Takeya S, Chuvilin EM, et al. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads. J Geophys Res. 2004;109:B05206.

    Article  Google Scholar 

  16. Dholabhai PD, Englezoa P, Kalogerakis N, et al. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions. Can J Chem Eng. 1991;69:800–5.

    Article  Google Scholar 

  17. Yongchen S, Mingjun Y, Liu Yu, et al. Influence of ions on phase equilibrium of methane hydrate. J Chem Ind Eng (China). 2009;60:1362–6.

    Google Scholar 

  18. Dickens GR, Quinby-Hunt MS. Methane hydrate stability in seawater. Geophys Res Lett. 1994;21(8):2115–8.

    Article  Google Scholar 

  19. Lu HL, Matsumoto R. Experimental studies on the possible influences of composition changes of pore water on the stability conditions of methane hydrate in marine sediments. Mar Chem. 2005;93:149–57.

    Article  Google Scholar 

  20. Nakamura T, Makino T, Sugahara T, et al. Stability boundaries of gas hydrates helped by methane-structure-H hydrates of ethylcyclohexane and cis-1, 2-dimethylcyclohexane. Chem Eng Sci. 2003;58(2):269–73.

    Article  Google Scholar 

  21. Deaton WM, Frost EM. Gas hydrates and their relation to the operation of natural-gas pipe lines. US Bur Mines Monogr. 1946;8:101.

    Google Scholar 

  22. Liu Changling, Ye Yuguang, Meng Qingguo, et al. Raman spectroscopic characteristics of natural gas hydrate recovered from Shenhu area in South China Sea and Qilian Mountain permafrost. Acta Chim Sin. 2010;68(18):1881–6.

    Google Scholar 

  23. Huang Yongyang, Zhang Guangxue. Geologic – geophysics characteristics and prospect of natural gas hydrate in Chinese sea area. Beijing: Geological Publishing House; 2009.

    Google Scholar 

  24. Matsumoto R, Watanabe Y, Satoh M, et al. ODP Leg 164 shipboard scientific party. J Geol Soc Japan. 1996;102:932.

    Article  Google Scholar 

  25. Makogon YF. Characteristics of a gas-field development in permafrost. Moscow: Nedra; 1966.

    Google Scholar 

  26. Kono HO, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing. Powder Technol. 2002;122:239–46.

    Article  Google Scholar 

  27. Kang SP, Lee JW. Kinetic behaviors of CO2 hydrate in porous media and effect of kinetic promoter on the formation kinetics. Chem Eng Sci. 2010;65:1840–5.

    Article  Google Scholar 

  28. Kang SP, Seo Y. Kinetics of methane and carbon dioxide hydrate formation in silica gel pores. Energy Fuel. 2009;23:3711–5.

    Article  Google Scholar 

  29. Riestenberg D, West O, Lee SY, et al. Sediment surface effects on methane hydrate formation and dissociation. Mar Geol. 2003;198(1–2):181–90.

    Article  Google Scholar 

  30. Lu HL, Wright F, Okui T, et al. The characteristics of methane hydrates synthesized in sand and clay sediments. Eur Geophys Soc. 2003;5:13389.

    Google Scholar 

  31. Buffett BA, Zatsepina OY. Formation of gas hydrate from dissolved gas in natural porous media. Mar Geol. 2000;164:69–77.

    Article  Google Scholar 

  32. Tohidi B, Anderson R, Clennell MB. Visual observation of gas hydrate formation and dissociation in porous media by means of glass micromodels. Geology. 2001;29(9):867–70.

    Article  Google Scholar 

  33. Cha SB, Ouar H, Wildeman TR, et al. A third surface effect on hydrate formation. J Phys Chem. 1988;92(23):6492–4.

    Article  Google Scholar 

  34. Ouar H, Cha SB, Wildeman TR, et al. The formation of natural gas hydrates in water based drilling fluids. Trans of I Chem E (A). 1992;70:48–54.

    Google Scholar 

  35. Kotkoskie TS, Al-Ubaldi B, Wildeman TR, et al. Inhibition of gas hydrate in water based drilling muds. SPE Drill Eng. 1992;7:130–6.

    Google Scholar 

  36. Park SH, Sposito G. Do montmorillonite surfaces promote methane hydrate formation Monte Carlo and molecular dynamics simulation. J Phys Chem B. 2003;107:2281–90.

    Article  Google Scholar 

  37. Titiloye JO, Skipper NT. Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures. Mol Phys. 2001;99(10):899–906.

    Article  Google Scholar 

  38. Cygan RT, Guggenheim S, Groos AFK. Molecular models for the intercalation of methane hydrate comp lexes in montmorillonite clay. J Phys Chem B. 2004;108:15141–9.

    Article  Google Scholar 

  39. Lu Xiancai, Yang Tao, Liu Xiandong, et al. Recent advance in study of methane hydrate stability in porous media. Geoscience. 2005;19:89.

    Google Scholar 

  40. Clennell MB, Martin H, James SB, et al. Formation of natural gas hydrates in marine sediments 1: conceptual model of gas hydrate growth conditioned by host sediment properties. J Geophys Res. 1999;104(B10):22985–3003.

    Article  Google Scholar 

  41. Chen Qiang, Ye Yuguang, Liu Changling, et al. Research on formation kinetics of methane hydrate in porous media. Mar Geol Quat Geol. 2007;27(1):111–6.

    Google Scholar 

  42. Turner DJ, Cherry RS, Sloa ED. Sensitivity of methane hydrate phase equilibria to sediment pore size. Fluid Phase Equilib. 2005;228(29):505–10.

    Article  Google Scholar 

  43. Seo Y, Lee H, Uchida T. Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling. Langmuir. 2002;18:9164–70.

    Article  Google Scholar 

  44. Kang SP, Ryu HJ, Seo Y. Phase behavior of CO2 and CH4 hydrate in porous media. World Acad Sci Eng Technol. 2007;33:183–8.

    Google Scholar 

  45. Zhang W, Wilder JW, Smith DH. Methane hydrate-ice equilibria in porous media. J Phys Chem B. 2003;107:13084–9.

    Article  Google Scholar 

  46. Zhang W, Wilder JW, Smith DH. Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria. A I Ch E J. 2002;48:2324–31.

    Article  Google Scholar 

  47. Smith DH, Seshadri K, Uchida T, et al. Thermodynamics of methane, propane, and carbon dioxide hydrates in porous glass. A I Ch E J. 2004;50(7):1589–98.

    Article  Google Scholar 

  48. Anderson R, Llamedo M, Tohidi B, et al. Characteristics of clathrate hydrate equilibria in mesopores and interpretation of experimental data. J Phys Chem B. 2003;107:3500–6.

    Article  Google Scholar 

  49. Anderson R, Llamedo M, Tohidi B, et al. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica. J Phys Chem B. 2003;107:3507–14.

    Article  Google Scholar 

  50. Kang SP, Lee JW, Ryu HJ. Phase behavior of methane and carbon dioxide hydrates in meso- and macro-sized porous media. Fluid Phase Equilib. 2008;274(1–2):68–72.

    Article  Google Scholar 

  51. Dicharry C, Gayet P, Marion G, et al. Modeling heating curve for gas hydrate dissociation in porous media. J Phys Chem B. 2005;109(36):17205–16.

    Article  Google Scholar 

  52. Seo Y, Lee S, Cha I, et al. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels. J Phys Chem B. 2009;113:5487–92.

    Article  Google Scholar 

  53. Bondarev EA, Groisman AG, Savvin AZ. Porous medium effect on phase equilibrium of tetrahydrofuran hydrate. In: Proceedings of the 2nd International Conference on Natural Gas Hydrates, 2−6 June 1996, Toulouse, France, p. 89.

    Google Scholar 

  54. Lu HL, Matsumoto R. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column. Geochem J. 2002;36:21–30.

    Article  Google Scholar 

  55. Englezos P, Hall S. Phase equilibrium data on carbon dioxide hydrate in the presence of electrolytes, water soluble polymers and montmorillonite. Can J Chem Eng. 1994;72:887–93.

    Article  Google Scholar 

  56. Ye Yuguang, Liu Changling, Liu Shouquan. Experimental studies on several significant problems related marine gas hydrate. High Technol Lett. 2004;10(Suppl):352–9.

    Google Scholar 

  57. Sun Shicai, Ye Yuguang, Liu Changling, et al. Preliminary experiment of stable P-T conditions of methane hydrate in quartz sand with multi-step dissociation method. Geoscience. 2010;24:638–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicai Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, S., Ye, Y., Liu, C., Zhang, J. (2013). Stable Conditions of Marine Gas Hydrate. In: Ye, Y., Liu, C. (eds) Natural Gas Hydrates. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31101-7_9

Download citation

Publish with us

Policies and ethics