Skip to main content

AWESOM: Automatic Discrete Partitioning of Indoor Spaces for WiFi Fingerprinting

  • Conference paper
Pervasive Computing (Pervasive 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7319))

Included in the following conference series:

Abstract

WiFi fingerprinting is currently one of the most popular techniques for indoor localization as it provides reasonable positioning accuracy while at the same time being able to exploit existing wireless infrastructure. To facilitate calibration efforts and to overcome fluctuations in location measurements, many indoor WiFi positioning systems utilize a discrete partitioning, e.g., a grid or a topological map, of the space where the positioning is being deployed. A major limitation of this approach, however, is that instead of considering spatial similarities in the signal environment, the partitioning is typically based on an uniform division of the space or topological constraints (e.g., rooms and walls). This can significantly decrease positioning accuracy when the signal environment is not sufficiently stable across all partitions. Moreover, current solutions provide no support for identifying partitions that are not compatible with the current wireless deployment. To overcome these limitations, we propose AWESOM (Activations Weighted by the Euclidean-distance using Self-Organizing Maps), a novel measure for automatically creating a discrete partitioning of the space where the WiFi positioning is being deployed. In addition to enabling automatic construction of a discrete partitioning, AWESOM provides a measure for evaluating the goodness of a given partitioning for a particular access point deployment. AWESOM also enables identifying partitions where additional access points should be deployed. We demonstrate the usefulness of AWESOM using data collected from two large scale deployments of a proprietary wireless positioning system in a hypermarket environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personal Communications 4(5), 42–47 (1997)

    Article  Google Scholar 

  2. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the International Conference on Mobile Computing and Networking (Mobicom), pp. 32–43 (2000)

    Google Scholar 

  3. Patel, S.N., Truong, K.N., Abowd, G.D.: PowerLine Positioning: A Practical Sub-Room-Level Indoor Location System for Domestic Use. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 441–458. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Kjærgaard, M.B.: A Taxonomy for Radio Location Fingerprinting. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 139–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Varshavsky, A., Patel, S.: Location in ubiquitous computing. In: Krumm, J. (ed.) Ubiquitous Computing Fundamentals, pp. 285–320. Chapman and Hall/CRC (2010)

    Google Scholar 

  6. Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Tracking System. In: Proceedings of the 19th Conference on Computer Communications (INFOCOM), vol. 2, pp. 775–784. IEEE Computer Society (2000)

    Google Scholar 

  7. Youssef, M., Agrawala, A.: The Horus location determination system. Wireless Networks 14, 357–374 (2008)

    Article  Google Scholar 

  8. Krumm, J., Platt, J.: Minimizing calibration effort for an indoor 802.11 device location measurement system. MSR-TR-2003-82, Microsoft Research, Seattle, WA (2003)

    Google Scholar 

  9. Nurmi, P., Bhattacharya, S., Kukkonen, J.: A grid-based algorithm for on-device GSM positioning. In: Proceedings of the 12th International Conference on Ubiquitous Computing (UbiComp), pp. 227–236 (2010)

    Google Scholar 

  10. Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.: Practical robust localization over large-scale 802.11 wireless networks. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 70–84. ACM (2004)

    Google Scholar 

  11. Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A., Otsason, V.: GSM indoor localization. Pervasive and Mobile Computing 3, 698–720 (2007)

    Article  Google Scholar 

  12. Chen, M.Y., Sohn, T., Chmelev, D., Haehnel, D., Hightower, J., Hughes, J., LaMarca, A., Potter, F., Smith, I., Varshavsky, A.: Practical Metropolitan-Scale Positioning for GSM Phones. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 225–242. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Honkavirta, V., Perälä, T., Löytty, S.A., Piché, R.: A comparative survey of WLAN location fingerprinting methods. In: Proceedings of the 6th Workshop on Positioning, Navigation and Communication (WPNC), pp. 243–251. IEEE (2009)

    Google Scholar 

  14. Castro, P., Chiu, P., Kremenek, T., Muntz, R.: A Probabilistic Room Location Service for Wireless Networked Environments. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 18–34. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., Sievänen, J.: A probabilistic approach to WLAN user location estimation. International Journal of Wireless Information Networks 9(3), 155–164 (2002)

    Article  Google Scholar 

  16. Krumm, J., Horvitz, E.: LOCADIO: Inferring motion and location from Wi-Fi signal strengths. In: Proceedings of the 1st International Conference on Mobile and Ubiquitous Systems (Mobiquitous), pp. 4–14. IEEE (2004)

    Google Scholar 

  17. Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based location sensing using wireless ethernet. Wireless Networks 11, 189–204 (2005)

    Article  Google Scholar 

  18. Hightower, J., Borriello, G.: Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 88–106. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Letchner, J., Fox, D., LaMarca, A.: Large-scale localization from wireless signal strength. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI), pp. 15–20. AAAI Press (2005)

    Google Scholar 

  20. Chai, X., Yang, Q.: Reducing the calibration effort for location estimation using unlabeled samples. In: 3rd IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 95–104. IEEE (2005)

    Google Scholar 

  21. Chai, X., Yang, Q.: Reducing the calibration effort for probabilistic indoor location estimation. IEEE Transactions on Mobile Computing 6(6), 649–662 (2007)

    Article  Google Scholar 

  22. Bolliger, P.: Redpin - adaptive, zero-configuration indoor localization through user collaboration. In: Proceedings of the first ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments (MELT), pp. 55–60. ACM (2008)

    Google Scholar 

  23. Barry, A., Fisher, B., Chang, M.L.: A Long-Duration Study of User-Trained 802.11 Localization. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 197–212. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Park, J., Charrow, B., Curtis, D., Battat, J., Minkov, E., Hicks, J., Teller, S.J., Ledlie, J.: Growing an organic indoor location system. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys 2010), pp. 271–284 (2010)

    Google Scholar 

  25. Koo, J., Cha, H.: Autonomous Construction of a WiFi Access Point Map Using Multidimensional Scaling. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 115–132. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Pulkkinen, T., Roos, T., Myllymäki, P.: Semi-supervised Learning for WLAN Positioning. In: Honkela, T., Duch, W., Girolami, W., Kaski, S. (eds.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 355–362. Springer, Heidelberg (2011)

    Google Scholar 

  27. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1998)

    Google Scholar 

  28. Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personally meaningful places: An interactive clustering approach. ACM Transactions on Information Systems 25(3), 12 (2007)

    Article  Google Scholar 

  29. Bhattacharya, S., Pulkkinen, T., Nurmi, P., Salovaara, A.: Monstre: A mobile navigation system for retail environments. In: International Workshop on Smart Mobile Applications (SmartApps) (2011)

    Google Scholar 

  30. Nurmi, P., Salovaara, A., Bhattacharya, S., Pulkkinen, T., Kahl, G.: Influence of landmark-based navigation instructions on user attention in indoor smart spaces. In: Proceedings of the 15th International Conference on Intelligent User Interfaces (IUI), pp. 96–105. ACM Press (2011)

    Google Scholar 

  31. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  32. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pulkkinen, T., Nurmi, P. (2012). AWESOM: Automatic Discrete Partitioning of Indoor Spaces for WiFi Fingerprinting. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds) Pervasive Computing. Pervasive 2012. Lecture Notes in Computer Science, vol 7319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31205-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31205-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31204-5

  • Online ISBN: 978-3-642-31205-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics