Skip to main content

Introduction to Phononic Crystals and Acoustic Metamaterials

  • Chapter
  • First Online:
Acoustic Metamaterials and Phononic Crystals

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 173))

Abstract

The objective of this chapter is to introduce the broad subject of phononic crystals and acoustic metamaterials. From a historical point of view, we have tried to refer to some of the seminal contributions that have made the field. This introduction is not an exhaustive review of the literature. However, we are painting in broad strokes a picture that reflects the biased perception of this field by the authors and coauthors of the various chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  CAS  Google Scholar 

  2. V. Narayanamurti, H.L. Störmer, M.A. Chin, A.C. Gossard, W. Wiegmann, Selective transmission of high-frequency phonons by a superlattice: the “Dielectric” phonon filter. Phys. Rev. Lett. 2, 2012 (1979)

    Article  Google Scholar 

  3. M.M. Sigalas, E.N. Economou, Elastic and acoustic wave band structure. J. Sound Vib. 158, 377 (1992)

    Article  Google Scholar 

  4. M. Sigalas, E. Economou, Band structure of elastic waves in two-dimensional systems. Solid State Commun. 86, 141 (1993)

    Article  CAS  Google Scholar 

  5. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993)

    Article  CAS  Google Scholar 

  6. R. Martinez-Salar, J. Sancho, J.V. Sanchez, V. Gomez, J. Llinares, F. Meseguer, Sound attenuation by sculpture. Nature 378, 241 (1995)

    Article  Google Scholar 

  7. F.R. Montero de Espinoza, E. Jimenez, M. Torres, Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208 (1998)

    Article  Google Scholar 

  8. J.O. Vasseur, P. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost, Experimental and theoretical evidence for the existence of absolute acoustic band gap in two-dimensional periodic composite media. Phys. Rev. Lett. 86, 3012 (2001)

    Article  CAS  Google Scholar 

  9. Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic crystal. Science 289, 1734 (2000)

    Article  CAS  Google Scholar 

  10. T. Gorishnyy, C.K. Ullal, M. Maldovan, G. Fytas, E.L. Thomas, Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)

    Article  CAS  Google Scholar 

  11. J.N. Gillet, Y. Chalopin, S. Volz, Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. J. Heat Transfer 131, 043206 (2009)

    Article  Google Scholar 

  12. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107 (2011)

    Article  CAS  Google Scholar 

  13. M. Torres, F.R. Montero de Espinosa, D. Garcia-Pablos, N. Garcia, Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects. Phys. Rev. Lett. 82, 3054 (1999)

    Article  CAS  Google Scholar 

  14. M. Kafesaki, M.M. Sigalas, N. Garcia, Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Phys. Rev. Lett. 85, 4044 (2000)

    Article  CAS  Google Scholar 

  15. A. Khelif, B. Djafari-Rouhani, J.O. Vasseur, P.A. Deymier, P. Lambin, L. Dobrzynski, Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal. Phys. Rev. B 65, 174308 (2002)

    Article  Google Scholar 

  16. Y. Tanaka, S.I. Tamura, Surface acoustic waves in two-dimensional periodic elastic structures. Phys. Rev. B 58, 7958 (1998)

    Article  CAS  Google Scholar 

  17. Y. Tanaka, S.I. Tamura, Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer. Phys. Rev. B 60, 13294 (1999)

    Article  CAS  Google Scholar 

  18. T.T. Wu, Z.G. Huang, S. Lin, Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Phys. Rev. B 69, 094301 (2004)

    Article  Google Scholar 

  19. V. Laude, M. Wilm, S. Benchabane, A. Khelif, Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Phys. Rev. E 71, 036607 (2005)

    Article  Google Scholar 

  20. J.J. Chen, B. Qin, J.C. Cheng, Complete band gaps for lamb waves in cubic thin plates with periodically placed inclusions. Chin. Phys. Lett. 22, 1706 (2005)

    Article  CAS  Google Scholar 

  21. C. Charles, B. Bonello, F. Ganot, Propagation of guided elastic waves in two-dimensional phononic crystals. Ultrasonics 44, 1209(E) (2006)

    Article  Google Scholar 

  22. J.C. Hsu, T.T. Wu, Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Phys. Rev. B 74, 144303 (2006)

    Article  Google Scholar 

  23. B. Manzanares-Martinez, F. Ramos-Mendieta, Surface elastic waves in solid composites of two-dimensional periodicity. Phys. Rev. B 68, 134303 (2003)

    Article  Google Scholar 

  24. R. Sainidou, N. Stefanou, Guided and quasiguided elastic waves in phononic crystal slabs. Phys. Rev. B 73, 184301 (2006)

    Article  Google Scholar 

  25. T.T. Wu, L.C. Wu, Z.G. Huang, Frequency band gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers. J. Appl. Phys. 97, 094916 (2005)

    Article  Google Scholar 

  26. S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, V. Laude, Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 065601(R) (2006)

    Article  Google Scholar 

  27. X. Zhang, T. Jackson, E. Lafond, P. Deymier, J. Vasseur, Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates. Appl. Phys. Lett. 88, 0419 (2006)

    Google Scholar 

  28. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006)

    Google Scholar 

  29. V.G. Veselago, The electrodynamics of substances with simultaneous negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1967)

    Article  Google Scholar 

  30. J. Li, C.T. Chan, Double negative acoustic metamaterials. Phys. Rev. E 70, 055602 (2004)

    Article  Google Scholar 

  31. Y. Ding, Z. Liu, C. Qiu, J. Shi, Metamaterials with simultaneous negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007)

    Article  Google Scholar 

  32. S. Yang, J.H. Pahe, Z. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004)

    Article  Google Scholar 

  33. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  CAS  Google Scholar 

  34. M. Ke, Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen, P. Sheng, Negative refraction imaging with two-dimensional phononic crystals. Phys. Rev. B 72, 064306 (2005)

    Article  Google Scholar 

  35. A. Sukhovich, L. Jing, J.H. Page, Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77, 014301 (2008)

    Article  Google Scholar 

  36. A. Sukhovich, B. Merheb, K. Muralidharan, J.O. Vasseur, Y. Pennec, P.A. Deymier, J.H. Pae, Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys. Rev. Lett. 102, 154301 (2009)

    Article  CAS  Google Scholar 

  37. B. Bonello, L. Beillard, J. Pierre, J.O. Vasseur, B. Perrin, O. Boyko, Negative refraction of surface acoustic waves in the subgigahertz range. Phys. Rev. B 82, 104108 (2010)

    Article  Google Scholar 

  38. M.K. Lee, P.S. Ma, I.K. Lee, H.W. Kim, Y.Y. Kim, Negative refraction experiments with guided shear horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98, 011909 (2011)

    Article  Google Scholar 

  39. J. Bucay, E. Roussel, J.O. Vasseur, P.A. Deymier, A.-C. Hladky-Hennion, Y. Penec, K. Muralidharan, B. Djafari-Rouhani, B. Dubus, Positive, negative, zero refraction and beam splitting in a solid/air phononic crystal: theoretical and experimental study. Phys. Rev. B 79, 214305 (2009)

    Article  Google Scholar 

  40. N. Swinteck, J.-F. Robillard, S. Bringuier, J. Bucay, K. Muralidaran, J.O. Vasseur, K. Runge, P.A. Deymier, Phase controlling phononic crystal. Appl. Phys. Lett. 98, 103508 (2011)

    Article  Google Scholar 

  41. I.E. Psarobas, Viscoelastic response of sonic band-gap materials. Phys. Rev. B 64, 012303 (2001)

    Article  Google Scholar 

  42. B. Merheb, P.A. Deymier, M. Jain, M. Aloshyna-Lessuffleur, S. Mohanty, A. Berker, R.W. Greger, Elastic and viscoelastic effects in rubber/air acoustic band gap structures: a theoretical and experimental study. J. Appl. Phys. 104, 064913 (2008)

    Article  Google Scholar 

  43. B. Merheb, P.A. Deymier, K. Muralidharan, J. Bucay, M. Jain, M. Aloshyna-Lesuffleur, R.W. Greger, S. Moharty, A. Berker, Viscoelastic Effect on acoustic band gaps in polymer-fluid composites. Model. Simul. Mat. Sci. Eng. 17, 075013 (2009)

    Article  Google Scholar 

  44. M.I. Hussein, Theory of damped bloch waves in elastic media. Phys. Rev. B 80, 212301 (2009)

    Article  Google Scholar 

  45. M.I. Hussein, M.J. Frazier, Band structure of phononic crystals with general damping. J. Appl. Phys. 108, 093506 (2010)

    Article  Google Scholar 

  46. R.P. Moiseyenko, V. Laude, Material loss influence on the complex band structure and group velocity of phononic crystals. Phys. Rev. B 83, 064301 (2011)

    Article  Google Scholar 

  47. C. Daraio, V.F. Nesterenko, E.B. Herbold, S. Jin, Strongly non-linear waves in a chain of Teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  CAS  Google Scholar 

  48. C. Daraio, V. Nesterenko, E. Herbold, S. Jin, Tunability of solitary wave properties in one-dimensional strongly non-linear phononic crystals. Phys. Rev. E 73, 26610 (2006)

    Article  CAS  Google Scholar 

  49. A. Merkel, V. Tournat, V. Gusev, Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals: properties of rotational modes. Phys. Rev. E 82, 031305 (2010)

    Article  CAS  Google Scholar 

  50. C. Goffaux, J.P. Vigneron, Theoretical study of a tunable phononic band gap system. Phys. Rev. B 64, 075118 (2001)

    Article  Google Scholar 

  51. J. Baumgartl, M. Zvyagolskaya, C. Bechinger, Tailoring of phononic band structure in colloidal crystals. Phys. Rev. Lett. 99, 205503 (2007)

    Article  CAS  Google Scholar 

  52. J.-Y. Yeh, Control analysis of the tunable phononic crystal with electrorheological material. Physica B 400, 137 (2007)

    Article  CAS  Google Scholar 

  53. Z.-G. Huang, T.-T. Wu, Temperature effect on the band gaps of surface and bulk acoustic waves in two-dimensional phononic crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 365 (2005)

    Article  Google Scholar 

  54. K.L. Jim, C.W. Leung, S.T. Lau, S.H. Choy, H.L.W. Chan, Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal. Appl. Phys. Lett. 94, 193501 (2009)

    Article  Google Scholar 

  55. K. Bertoldi, M.C. Boyce, Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Phys. Rev. B 77, 052105 (2008)

    Article  Google Scholar 

  56. Z. Hou, F. Wu, Y. Liu, Phononic crystals containing piezoelectric material. Solid State Commun. 130, 745 (2004)

    Article  CAS  Google Scholar 

  57. Y. Wang, F. Li, Y. Wang, K. Kishimoto, W. Huang, Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice. Acta Mech. Sin. 25, 65 (2008)

    Article  CAS  Google Scholar 

  58. Y.-Z. Wang, F.-M. Li, W.-H. Huang, X. Jiang, Y.-S. Wang, K. Kishimoto, Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. Int. J. Solids Struct. 45, 4203 (2008)

    Article  CAS  Google Scholar 

  59. Y.-Z. Wang, F.-M. Li, K. Kishimoto, Y.-S. Wang, W.-H. Huang, Elastic wave band gaps in magnetoelectroelastic phononic crystals. Wave Motion 46, 47 (2009)

    Article  CAS  Google Scholar 

  60. J.-F. Robillard, O. Bou Matar, J.O. Vasseur, P.A. Deymier, M. Stippinger, A.-C. Hladky- Hennion, Y. Pennec, B. Djafari-Rouhani, Tunable magnetoelastic phononic crystals. Appl. Phys. Lett. 95, 124104 (2009)

    Article  Google Scholar 

  61. J.-F. Robillard, K. Muralidharan, J. Bucay, P.A. Deymier, W. Beck, D. Barker, Phononic metamaterials for thermal management: an atomistic computational study. Chin. J. Phys. 49, 448 (2011)

    CAS  Google Scholar 

  62. M. Maldovan, E.L. Thomas, Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Appl. Phys. B 83(4), 595 (2006)

    Article  CAS  Google Scholar 

  63. M. Maldovan, E.L. Thomas, Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88(25), 251 (2006)

    Article  Google Scholar 

  64. S. Sadat-Saleh, S. Benchabane, F. Issam Baida, M.-P. Bernal, V. Laude, Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106, 074912 (2009)

    Article  Google Scholar 

  65. N. Papanikolaou, I.E. Psarobas, N. Stefanou, Absolute spectral gaps for infrared ligth and hypersound in three-dimensional metallodielectric phoxonic crystals. Appl. Phys. Lett, 96, 231917 (2010)

    Article  Google Scholar 

  66. I.E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, V. Laude, Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Phys. Rev. B 82, 174303 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre A. Deymier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deymier, P.A. (2013). Introduction to Phononic Crystals and Acoustic Metamaterials. In: Deymier, P. (eds) Acoustic Metamaterials and Phononic Crystals. Springer Series in Solid-State Sciences, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31232-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31232-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31231-1

  • Online ISBN: 978-3-642-31232-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics