Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

The capture of CO2 from fossil fuel combustion, e.g., coal-fired power plants, represents a critical component of efforts aimed at stabilizing greenhouse gas levels in the atmosphere. In addition, removal of CO2 from natural gas is of vital importance to maintain and expand the availability of these clean-burning, efficient fuel sources. In recent years, worldwide efforts have been devoted to developing various technologies/processes for CCS, including adopting liquids, solids, and membranes as adsorbents. Interest in PEGs stems from its distinctive properties, such as inexpensive, thermally stable, almost negligible vapor pressure, toxicologically innocuous, and environmentally benign characterization. The functionalized-PEGs have been developed for both physical and chemical capture of CO2, including PEGs (Sect. 4.1), PEG-modified solid absorbents (Sect. 4.2), PEG-functionalized gas-separation membranes (Sect. 4.3) and PEG-functionalized liquid absorbents (Sect. 4.4). Indeed, PEG could increase the solubility of CO2 in the absorbent through chemical interactions, which is detected by in situ FT-IR under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082

    Article  Google Scholar 

  2. McCann N, Maeder M, Attalla M (2008) Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind Eng Chem Res 47(6):2002–2009

    Article  CAS  Google Scholar 

  3. Bates ED, Mayton RD, Ntai I et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Article  CAS  Google Scholar 

  4. Wang C, Luo H, Jiang De et al (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49(34):5978–5981

    CAS  Google Scholar 

  5. Wang C, Luo X, Luo H et al (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Ed 50(21):4918–4922

    Article  CAS  Google Scholar 

  6. Li X, Hou M, Zhang Z et al (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10(8):879–884

    Article  CAS  Google Scholar 

  7. Ochiai B, Yokota K, Fujii A et al (2008) Reversible trap—release of CO2 by polymers bearing DBU and DBN moieties. Macromolecules 41(4):1229–1236

    Article  CAS  Google Scholar 

  8. MacDowell N, Florin N, Buchard A et al (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669

    Article  CAS  Google Scholar 

  9. Goeppert A, Meth S, Prakash GKS et al (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energ Environ Sci 3(12):1949–1960

    Article  CAS  Google Scholar 

  10. Aschenbrenner O, Styring P (2010) Comparative study of solvent properties for carbon dioxide absorption. Energ Environ Sci 3(8):1106–1113

    Article  CAS  Google Scholar 

  11. Wang Q, Luo J, Zhong Z et al (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energ Environ Sci 4(1):42–55

    Article  CAS  Google Scholar 

  12. Gurkan BE, de la Fuente JC, Mindrup EM et al (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117

    Article  CAS  Google Scholar 

  13. Rochelle GT (2009) Amine Scrubbing for CO2 Capture. Science 325(5948):1652–1654

    Article  CAS  Google Scholar 

  14. Haszeldine RS (2009) Carbon capture and storage: How green can black be? Science 325(5948):1647–1652

    Article  CAS  Google Scholar 

  15. Yong Z, Mata V, Rodrigues ArE (2002) Adsorption of carbon dioxide at high temperature—a review. Sep Purif Technol 26(2–3):195–205

    Article  CAS  Google Scholar 

  16. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854

    Article  CAS  Google Scholar 

  17. Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348

    Article  CAS  Google Scholar 

  18. Suh MP, Cheon YE, Lee EY (2008) Syntheses and functions of porous metallosupramolecular networks. Coord Chem Rev 252(8–9):1007–1026

    Article  CAS  Google Scholar 

  19. Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504

    Article  CAS  Google Scholar 

  20. Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47(27):4966–4981

    Article  CAS  Google Scholar 

  21. Ebner AD, Ritter JA (2009) State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep Sci Technol 44(6):1273–1421

    Article  CAS  Google Scholar 

  22. Yu KMK, Curcic I, Gabriel J et al (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899

    Article  CAS  Google Scholar 

  23. Radosz M, Hu X, Krutkramelis K et al (2008) Flue-gas carbon capture on carbonaceous sorbents: toward a low-cost multifunctional carbon filter for “green” energy producers. Ind Eng Chem Res 47(10):3783–3794

    Article  CAS  Google Scholar 

  24. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663

    Article  CAS  Google Scholar 

  25. Li L, Zhao N, Wei W et al. (2011) A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel 90(0). doi:10.1016/j.fuel.2011.1008.1022

  26. Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898

    Article  CAS  Google Scholar 

  27. Yang Z-Z, Zhao Y-N, He L-N (2011) CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv 1(4):545–567

    Article  CAS  Google Scholar 

  28. Aionicesei E, Škerget M, Knez Ž (2008) Measurement and modeling of the CO2 solubility in poly(ethylene glycol) of different molecular weights. J Chem Eng Data 53(1):185–188

    Article  CAS  Google Scholar 

  29. Wiesmet V, Weidner E, Behme S et al (2000) Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)–propane, PEG–nitrogen and PEG–carbon dioxide. J Supercrit Fluids 17(1):1–12

    Article  CAS  Google Scholar 

  30. Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31(1):19–43

    Article  CAS  Google Scholar 

  31. Weidner E, Wiesmet V, Knez Ž et al (1997) Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems. J Supercrit Fluids 10(3):139–147

    Article  CAS  Google Scholar 

  32. Li J, Ye Y, Chen L et al (2011) Solubilities of CO2 in poly(ethylene glycols) from (303.15 to 333.15) K. J Chem Eng Data 57(2):610–616

    Article  Google Scholar 

  33. Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132(18):6312–6314

    Article  CAS  Google Scholar 

  34. Xu X, Song C, Miller BG et al (2005) Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on Polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44(21):8113–8119

    Article  CAS  Google Scholar 

  35. Gray ML, Hoffman JS, Hreha DC et al (2009) Parametric study of solid amine sorbents for the capture of carbon dioxide. Energ Fuel 23(10):4840–4844

    Article  CAS  Google Scholar 

  36. Lee SC, Chae HJ, Lee SJ et al (2008) Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ Sci Technol 42(8):2736–2741

    Article  CAS  Google Scholar 

  37. Lee S, Choi B, Ryu C et al (2006) The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents. Korean J Chem Eng 23(3):374–379

    Article  CAS  Google Scholar 

  38. Su F, Lu C, Kuo S-C et al (2010) Adsorption of CO2 on amine-functionalized Y-yype zeolites. Energ Fuel 24(2):1441–1448

    Article  CAS  Google Scholar 

  39. Yue MB, Chun Y, Cao Y et al (2006) CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16(13):1717–1722

    Article  CAS  Google Scholar 

  40. Tanthana J, Chuang SSC (2010) In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3(8):957–964

    Article  CAS  Google Scholar 

  41. Young S (2001) Global energy prospects. Nature 414(6863):487–488

    Article  Google Scholar 

  42. Ogden JM (2002) Hydrogen: the fuel of the future? Phys Today 55(4):69–75

    Article  CAS  Google Scholar 

  43. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967

    Article  CAS  Google Scholar 

  44. Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94(1):1–65

    Article  Google Scholar 

  45. Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energ Fuel 15(2):274–278

    Article  CAS  Google Scholar 

  46. Tavolaro A, Drioli E (1999) Zeolite membranes. Adv Mater 11(12):975–996

    Article  CAS  Google Scholar 

  47. Lin H, Freeman BD (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739(1–3):57–74

    Article  CAS  Google Scholar 

  48. Kim JH, Ha SY, Nam SY et al (2001) Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol). J Membr Sci 186(1):97–107

    Article  CAS  Google Scholar 

  49. Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B: Polym Phys 38(15):2051–2062

    Article  CAS  Google Scholar 

  50. Bondar VI, Freeman BD, Pinnau I (1999) Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B: Polym Phys 37(17):2463–2475

    Article  CAS  Google Scholar 

  51. K-i Okamoto, Fuji M, Okamyo S et al (1995) Gas permeation properties of poly(ether imide) segmented copolymers. Macromolecules 28(20):6950–6956

    Article  Google Scholar 

  52. Garzón B, Lago S, Vega C et al (1994) Computer simulation of vapor–liquid equilibria of linear quadrupolar fluids. Departures from the principle of corresponding states. J Chem Phys 101(5):4166–4176

    Article  Google Scholar 

  53. Patel NP, Hunt MA, Lin-Gibson S et al (2005) Tunable CO2 transport through mixed polyether membranes. J Membr Sci 251(1–2):51–57

    Article  CAS  Google Scholar 

  54. Yoshino M, Ito K, Kita H et al (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)-segmented copolymers. J Polym Sci Part B: Polym Phys 38(13):1707–1715

    Article  CAS  Google Scholar 

  55. Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. J Membr Sci 190(2):179–193

    Article  CAS  Google Scholar 

  56. Car A, Stropnik C, Yave W et al (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307(1):88–95

    Article  CAS  Google Scholar 

  57. Cong H, Yu B (2010) Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation. Ind Eng Chem Res 49(19):9363–9369

    Article  CAS  Google Scholar 

  58. Dharman MM, Choi H-J, Kim D-W et al (2011) Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionic liquids: Effect of variation in the silica support. Catal Today 164(1):544–547

    Article  CAS  Google Scholar 

  59. Zhang S, Chen Y, Li F et al (2006) Fixation and conversion of CO2 using ionic liquids. Catal Today 115(1–4):61–69

    Article  CAS  Google Scholar 

  60. Pérez-Salado Kamps Á, Tuma D, Xia J et al (2003) Solubility of CO2 in the Ionic Liquid [bmim][PF6]. J Chem Eng Data 48(3):746–749

    Article  Google Scholar 

  61. Shiflett MB, Yokozeki A (2007) Solubility of CO2 in room temperature ionic liquid [hmim][Tf2 N]. J Phys Chem B 111(8):2070–2074

    Article  CAS  Google Scholar 

  62. Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family. J Chem Eng Data 54(2):382–386

    Article  Google Scholar 

  63. Davis Jr JH (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077

    Google Scholar 

  64. Yu G, Zhang S, Yao X et al (2006) Design of task-specific ionic liquids for capturing CO2: a molecular orbital study. Ind Eng Chem Res 45(8):2875–2880

    Article  CAS  Google Scholar 

  65. Camper D, Bara J, Koval C et al (2006) Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids. Ind Eng Chem Res 45(18):6279–6283

    Article  CAS  Google Scholar 

  66. Camper D, Scovazzo P, Koval C et al (2004) Gas solubilities in room-temperature ionic liquids. Ind Eng Chem Res 43(12):3049–3054

    Article  CAS  Google Scholar 

  67. Cadena C, Anthony JL, Shah JK et al (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126(16):5300–5308

    Article  CAS  Google Scholar 

  68. Anthony JL, Anderson JL, Maginn EJ et al (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109(13):6366–6374

    Article  CAS  Google Scholar 

  69. Baltus RE, Culbertson BH, Dai S et al (2004) Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. J Phys Chem B 108(2):721–727

    Article  CAS  Google Scholar 

  70. Baltus RE, Counce RM, Culbertson BH et al (2005) Examination of the potential of ionic liquids for gas separations. Separ Sci Technol 40(1):525–541

    Article  CAS  Google Scholar 

  71. Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238(1–2):57–63

    Article  CAS  Google Scholar 

  72. Bara JE, Gabriel CJ, Lessmann S et al (2007) Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind Eng Chem Res 46(16):5380–5386

    Article  CAS  Google Scholar 

  73. Zhang J, Zhang S, Dong K et al (2006) Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem Eur J 12(15):4021–4026

    Article  CAS  Google Scholar 

  74. Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8(7):630–633

    Article  CAS  Google Scholar 

  75. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5(4):361–363

    Article  CAS  Google Scholar 

  76. Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem 7(1):9–14

    Article  CAS  Google Scholar 

  77. Pretti C, Chiappe C, Pieraccini D et al (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8(3):238–240

    Article  CAS  Google Scholar 

  78. Galán Sánchez LM, Meindersma GW, de Haan AB (2007) Solvent properties of functionalized ionic liquids for CO2 absorption. Chem Eng Res Des 85(1):31–39

    Article  Google Scholar 

  79. Avalos M, Babiano R, Cintas P et al (2006) Greener media in chemical synthesis and processing. Angew Chem Int Ed 45(24):3904–3908

    Article  CAS  Google Scholar 

  80. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399

    Article  CAS  Google Scholar 

  81. G-h Tao, He L, Sun N et al (2005) New generation ionic liquids: cations derived from amino acids. Chem Commun 28:3562–3564

    Google Scholar 

  82. Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71

    Article  Google Scholar 

  83. Zhang J, Han B, Zhao Y et al (2011) CO2 capture by hydrocarbon surfactant liquids. Chem Commun 47(3):1033–1035

    Article  CAS  Google Scholar 

  84. Zhou N, Li Q, Wu J et al (2001) Spectroscopic characterization of solubilized water in reversed micelles and microemulsions: sodium bis(2-ethylhexyl) sulfosuccinate and sodium bis(2-ethylhexyl) phosphate in n-heptane. Langmuir 17(15):4505–4509

    Article  CAS  Google Scholar 

  85. Li N, Zhang S, Li X et al (2009) Effect of polyethylene glycol (PEG-400) on the 1-butyl-3-methylimidazolium tetrafluoroborate-in-cyclohexane ionic liquid microemulsion. Colloid Polym Sci 287(1):103–108

    Article  CAS  Google Scholar 

  86. Kazarian SG, Vincent MF, Bright FV et al (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118(7):1729–1736

    Article  CAS  Google Scholar 

  87. Mawson S, Johnston KP, Combes JR et al (1995) Formation of poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules 28(9):3182–3191

    Article  CAS  Google Scholar 

  88. Kazarian SG, Briscoe BJ, Welton T (2000) Combining ionic liquids and supercritical fluids: ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. Chem Commun 20:2047–2048

    Article  Google Scholar 

  89. Cammarata L, Kazarian SG, Salter PA et al (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3(23):5192–5200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Nian He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Yang, ZZ., Song, QW., He, LN. (2012). CO2 Capture with PEG. In: Capture and Utilization of Carbon Dioxide with Polyethylene Glycol. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31268-7_4

Download citation

Publish with us

Policies and ethics