Skip to main content

A Conserved Biomimetic Control Architecture for Walking, Swimming and Flying Robots

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

Simple animals adapt with impunity to the most challenging of conditions without training or supervision. Their behavioral repertoire is organized into a layered set of exteroceptive reflexes that can operate in parallel and form sequences in response to affordances of the environment. We have developed a common architecture that captures these underlying mechanisms for implementation in engineered devices. The architecture instantiates the underlying networks with discrete time map-based neurons and synapses on a sequential processor. A common board set instantiates releasing mechanisms, command neurons, coordinating neurons, central pattern generators, and reflex functions that are programmed as networks rather than as algorithms. Layered exteroceptive reflexes mediate heading control, impediment compensation, obstacle negotiation, rheotaxis, docking, and odometry and can be adapted to a variety of robotic platforms. We present the implementation of this architecture for three locomotory modes: swimming, walking, and flying.

Supported by NSF Grant ITR 0925751, ONR MURI in Synthetic Biology(2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein, P.S., Grillner, G.S., Selverston, A.I., Stuart, D.G.: Neurons, Networks and Motor Behavior. MIT Press, Cambridge (1997)

    Google Scholar 

  2. Ayers, J.: Underwater walking. Arthro. Struct. and Develop. 33(3), 347–360 (2004)

    Article  Google Scholar 

  3. Westphal, A., Rulkov, N., Ayers, J., Brady, D., Hunt, M.: Controlling a lamprey-based robot with an electronic nervous system. Struct. and Sys. 8(1), 37–54 (2011)

    Google Scholar 

  4. Wood, R.: The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Transactions on Robotics (2008)

    Google Scholar 

  5. Kennedy, D., Davis, W.J.: Organization of Invertebrate Motor Systems. Handbook of Physiology. The organization of invertebrate motor systems. In: Geiger, S.R., Kandel, E.R., Brookhart, J.M., Mountcastle, V.B. (eds.) Handbook of Physiology, sec. I, vol. I, part 2, pp. 1023–1087. Amer. Physiol. Soc, Bethesda (1977)

    Google Scholar 

  6. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)

    Article  MathSciNet  Google Scholar 

  7. Buchanan, J.T., Grillner, S.: Newly identified ’glutamate interneurons’ and their role in locomotion in the lamprey spinal cord. Science 236(4799), 312–314 (1987)

    Article  Google Scholar 

  8. Ayers, J., Davis, W.J.: Neuronal Control of Locomotion in the Lobster (Homarus americanus) 1. Motor Programs for forward and Backward walking. J. Comp. Physiol. A 115, 1–27 (1977)

    Article  Google Scholar 

  9. Ayers, J., Witting, J.: Biomimetic Approaches to the Control of Underwater Walking Machines. Phil. Trans. R. Soc. Lond. A 365, 273–295 (2007)

    Article  Google Scholar 

  10. Duhamel, P.E., Porter, J.A., Finio, B.M., Barrows, G.H., Brooks, D., Wei, G.Y., Wood, R.: Hardware in the loop for Optical Flow Sensing in a Robotic Bee. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Francisco, CA (2011)

    Google Scholar 

  11. Finio, B.M., Shang, J.K., Wood, R.J.: Body torque modulation for a microrobotic fly. In: IEEE International Conference on Robotics and Automation, pp. 3449–3456 (2009)

    Google Scholar 

  12. Lohmann, K., Pentcheff, N., Nevitt, G., Stetten, G., Zimmer-Faust, R., Jarrard, H., Boles, L.: Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems. J. Exp. Biol. 198(10), 2041–2048 (1995)

    Google Scholar 

  13. Srinivasan, M., Zhang, S., Lehrer, M., Collett, T.: Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996)

    Google Scholar 

  14. Menzel, R., De Marco, R.J., Greggers, U.: Spatial memory, navigation and dance behaviour in Apis mellifera. J. Comp. Physiol. A 192(9), 889–903 (2006)

    Article  Google Scholar 

  15. Dickinson, M.H., Lent, C.M.: Feeding behavior of the medicinal leech, Hirudo medicinalis L. J. of Comp. Physiol. A 154(4), 449–455 (1984)

    Article  Google Scholar 

  16. Berridge, K.C., Fentress, J.C., Parr, H.: Natural syntax rules control action sequence of rats. Behavioural Brain Research 23(1), 59–68 (1987)

    Article  Google Scholar 

  17. Grasso, F.W., Basil, J.A.: How lobsters, crayfishes, and crabs locate sources of odor: current perspectives and future. Curr. Opin. in Neurobiol. 12, 721–727 (2002)

    Article  Google Scholar 

  18. Purnick, P.E., Weiss, R.: The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10(6), 410–422 (2009)

    Article  Google Scholar 

  19. Antunes, M.S., Morey, K.J., Smith, J.J., Albrecht, K.D., Bowen, T.A., Zdunek, J.K., Troupe, J.F., Cuneo, M.J., Webb, C.T., Hellinga, H.W., Medford, J.I.: Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway. PLoS ONE 6(1), e16292 (2011)

    Article  Google Scholar 

  20. Holldobler, B., Wilson, E.O.: The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. W. W. Norton, Co., New York (2008)

    Google Scholar 

  21. Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., Ball, K.: The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. In: Proceedings of MTS/IEEE, OCEANS 2005, vol. 2, pp. 1086–1092 (2005)

    Google Scholar 

  22. Freitag, L., Johnson, M., Grund, M., Singh, S., Preisig, J.: Integrated acoustic communication and navigation for multiple UUVs. In: MTS/IEEE Conference and Exhibition, OCEANS 2001, vol. 4, pp. 2065–2070 (2001)

    Google Scholar 

  23. Braitenberg, V.: Taxis, Kinesis and Decussation. Prog. Br. Res. 17, 210–222 (1978)

    Article  Google Scholar 

  24. Webb, B.: Validating biorobotic models. J. Neural Engineering 3, 1–20 (2006)

    Article  Google Scholar 

  25. Beer, R.D., Chiel, H.J., Quinn, R.D., Ritzmann, R.E.: Biorobotic approaches to the study of motor systems. Curr. Opin. Neurobiology 8, 777–782 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ayers, J., Blustein, D., Westphal, A. (2012). A Conserved Biomimetic Control Architecture for Walking, Swimming and Flying Robots. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics