Skip to main content

Hairpin Lengthening and Shortening of Regular Languages

  • Chapter
Languages Alive

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7300))

Abstract

We consider here two formal operations on words inspired by the DNA biochemistry: hairpin lengthening introduced in [15] and its inverse called hairpin shortening. We study the closure of the class of regular languages under the non-iterated and iterated variants of the two operations. The main results are: although any finite number of applications of the hairpin lengthening to a regular language may lead to non-regular languages, the iterated hairpin lengthening of a regular language is always regular. As far as the hairpin shortening operation is concerned, the class of regular languages is closed under bounded and unbounded iterated hairpin shortening.

Work supported by the Alexander von Humboldt Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on watson-crick-like complementarity. Theory of Computing Systems 39(4), 503–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Castellanos, J., Mitrana, V.: Some remarks on hairpin and loop languages. In: Words, Semigroups, and Transductions 2001, pp. 47–58 (2001)

    Google Scholar 

  3. Cheptea, D., Martín-Vide, C., Mitrana, V.: A new operation on words suggested by dna biochemistry: Hairpin completion. Transgressive Computing, 216–228 (2006)

    Google Scholar 

  4. Deaton, R., Murphy, R., Garzon, M., Franceschetti, D., Stevens Jr., S.: Good encodings for DNA-based solutions to combinatorial problems. In: Proceedings of the Second Annual Meeting on DNA Based Computer. DIMACS, vol. 44, pp. 247–259 (1996)

    Google Scholar 

  5. Diekert, V., Kopecki, S.: Complexity Results and the Growths of Hairpin Completions of Regular Languages (Extended Abstract). In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 105–114. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Diekert, V., Kopecki, S.: Language theoretical properties of hairpin formations. Theoretical Computer Science 429, 65–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diekert, V., Kopecki, S., Mitrana, V.: On the Hairpin Completion of Regular Languages. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 170–184. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Garzon, M., Deaton, R., Nino, L., Stevens, E., Wittner, M.: Encoding genomes for DNA computing. In: Koza, J., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Goldberg, D., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 684–690. Morgan Kaufmann, Madison (1998)

    Google Scholar 

  9. Ito, M., Leupold, P., Manea, F., Mitrana, V.: Bounded hairpin completion. Information and Computation 209(3), 471–485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kari, L., Konstantinidis, S., Sosík, P., Thierrin, G.: On Hairpin-Free Words and Languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 296–307. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kari, L., Losseva, E., Konstantinidis, S., Sosík, P., Thierrin, G.: A formal language analysis of DNA hairpin structures. Fundam. Inform. 71(4), 453–475 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Kopecki, S.: On iterated hairpin completion. Theoretical Computer Science 412(29), 3629–3638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Manea, F.: A series of algorithmic results related to the iterated hairpin completion. Theoretical Computer Science 411(48), 4162–4178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manea, F., Martín-Vide, C., Mitrana, V.: On some algorithmic problems regarding the hairpin completion. Discrete Applied Mathematics 157(9), 2143–2152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manea, F., Martín-Vide, C., Mitrana, V.: Hairpin Lengthening. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 296–306. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Manea, F., Mitrana, V.: Hairpin Completion Versus Hairpin Reduction. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by the DNA hairpin formation: Completion and reduction. Theoretical Computer Science 410(4-5), 417–425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Manea, F., Martín-Vide, C., Mitrana, V.: Hairpin lengthening: Language theoretic and algorithmic results. Journal of Logic and Compuation (to appear, 2012)

    Google Scholar 

  19. Păun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. International Journal of Foundations of Computer Science 12, 837–847 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  21. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by dna hairpin formation. Science 288(5469), 1223–1226 (2000)

    Article  Google Scholar 

  22. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V.: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18(22), 6531–6535 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manea, F., Mercas, R., Mitrana, V. (2012). Hairpin Lengthening and Shortening of Regular Languages. In: Bordihn, H., Kutrib, M., Truthe, B. (eds) Languages Alive. Lecture Notes in Computer Science, vol 7300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31644-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31644-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31643-2

  • Online ISBN: 978-3-642-31644-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics