Skip to main content

Complexity Results for the Empire Problem in Collection of Stars

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7402))

  • 1165 Accesses

Abstract

In this paper, we study the Empire Problem, a generalization of the coloring problem to maps on two-dimensional compact surface whose genus is positive. Given a planar graph with a certain partition of the vertices into blocks of size r, for a given integer r, the problem consists of deciding if s colors are sufficient to color the vertices of the graph such that vertices of the same block have the same color and vertices of two adjacent blocks have different colors. In this paper, we prove that given a 5-regular graph, deciding if there exists a 4-coloration is NP-complete. Also, we propose conditional NP-completeness results for the Empire Problem when the graph is a collection of stars. A star is a graph isomorphic to K 1,q for some q ≥ 1. More exactly, we prove that for r ≥ 2, if the (2r − 1)-coloring problem in 2r-regular connected graphs is NP-complete, then the Empire Problem for blocks of size r + 1 and s = 2r − 1 is NP-complete for forests of K 1, r . Moreover, we prove that this result holds for r = 2. Also for r ≥ 3, if the r-coloring problem in (r + 1)-regular graphs is NP-complete, then the Empire Problem for blocks of size r + 1 and s = r is NP-complete for forests of K 1, 1 = K 2, i.e., forest of edges. Additionally, we prove that this result is valid for r = 2 and r = 3. Finally, we prove that these results are the best possible, that is for smallest value of s or r, the Empire Problem in these classes of graphs becomes polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Mouhamed, M., Dandashi, A.: Graph coloring for class scheduling. In: IEEE/ACS Internation Conference on Computer Systems and Applications (AICCSA), pp. 1–4 (2010)

    Google Scholar 

  2. Cooper, C., McGrae, A.R.A., Zito, M.: Martingales on Trees and the Empire Chromatic Number of Random Trees. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 74–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphes are NP-complete. Discrete Mathematics 30(3), 289–293 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Demange, M., Monnot, J., Pop, P., Ries, B.: Selective graph coloring in some special classes of graphs. In: Proceedings of 2nd International Symposium on Combinatorial Optimization, ISCO 2012 (to appear in LNCS, 2012)

    Google Scholar 

  5. Gardner, M.: M-Pire Maps. In: The last recreations. Hydras, Eggs and Other Mathematical Mystifications, pp. 85–100. Spring-Verlag New York, Inc. (1997)

    Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  7. Giaro, K., Kubale, M., Obszarski, P.: A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints. Discrete Applied Mathematics 157(17), 3625–3630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heawood, P.J.: Map colour theorem. Quarterly Journal of Pure and Applied Mathematics 24, 332–338 (1890)

    Google Scholar 

  9. Jackson, B., Ringel, G.: Solution of heawood’s empire problem in the plane. Journal für die Reine und Angewandte Mathematik 347, 146–153 (1984)

    MathSciNet  MATH  Google Scholar 

  10. McGrae, A.R., Zito, M.: Colouring Random Empire Trees. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 515–526. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. McGrae, A.R., Zito, M.: The complexity of the empire colouring problem. CoRR, abs/1109.2162 (2011)

    Google Scholar 

  12. McGrae, A.R., Zito, M.: Empires Make Cartography Hard: The Complexity of the Empire Colouring Problem. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 179–190. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Ries, B.: Complexity of two coloring problems in cubic planar bipartite mixed graphs. Discrete Applied Mathematics 158(5), 592–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couetoux, B., Monnot, J., Toubaline, S. (2012). Complexity Results for the Empire Problem in Collection of Stars. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31770-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31769-9

  • Online ISBN: 978-3-642-31770-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics