Skip to main content

SINE Exaptation as Cellular Regulators Occurred Numerous Times During Eukaryote Evolution

  • Chapter
  • First Online:
Plant Transposable Elements

Part of the book series: Topics in Current Genetics ((TCG,volume 24))

Abstract

Exaptation is defined as a successful adaptation by acquiring a new function from previously useless DNA sequences. I review here recent evidences suggesting that Short INterspersed Elements (SINEs) were exapted numerous times during eukaryote evolution. I propose that the ubiquitous presence of SINEs in eukaryotes depends mainly on their parasitic nature coupled to the facility by which their RNA can be exapted and preserved long after the SINE family responsible for its biogenesis stopped amplifying. Therefore, exapted SINE RNAs (and loci responsible for their production) represent a reservoir to initiate new rounds of retroposition (and new SINE families) that in turn generate new materials for further exaptation events. While most examples of SINE exaptation come from animals, the ubiquitous nature of SINEs in plants coupled with the recent availability of a significant number of fully sequenced plant genomes should soon reveal new examples of plant SINE exaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaki T, Nikaido M, Nishihara H, Tsuchiya K, Segawa S, Okada N (2010) Characterization of a novel SINE superfamily from invertebrates: “Ceph-SINEs” from the genomes of squids and cuttlefish. Gene 454:8–19

    Article  PubMed  CAS  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  PubMed  CAS  Google Scholar 

  • Arnaud P, Yukawa Y, Lavie L, Pélissier T, Sugiura M, Deragon JM (2001) Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. Plant J 26:295–305

    Article  PubMed  CAS  Google Scholar 

  • Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, Sanmiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732

    Article  PubMed  Google Scholar 

  • Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD (1997) LINEs and Alus–the polyA connection. Nat Genet 16:6–7

    Article  PubMed  CAS  Google Scholar 

  • Brosius J, Gould SJ (1992) On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci USA 89:10706–10710

    Article  PubMed  CAS  Google Scholar 

  • Buckley PT, Lee MT, Sul JY, Miyashiro KY, Bell TJ, Fisher SA, Kim J, Eberwine J (2011) Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons. Neuron 69:877–884

    Article  PubMed  CAS  Google Scholar 

  • Castelnuovo M, Massone S, Tasso R, Fiorino G, Gatti M, Robello M, Gatta E, Berger A, Strub K, Florio T, Dieci G, Cancedda R, Pagano A (2010) An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J 24:4033–4046

    Article  PubMed  CAS  Google Scholar 

  • Chu WM, Liu WM, Schmid CW (1995) RNA polymerase III promoter and terminator elements affect Alu RNA expression. Nucleic Acids Res 23:1750–1757

    Article  PubMed  CAS  Google Scholar 

  • Cognat V, Deragon JM, Vinogradova E, Salinas T, Remacle C, Marechal-Drouard L (2008) On the evolution and expression of Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes. Genetics 179:113–123

    Article  PubMed  CAS  Google Scholar 

  • Deragon JM, Zhang X (2006) Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Syst Biol 55:949–956

    Article  PubMed  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134:221–234

    Article  PubMed  CAS  Google Scholar 

  • Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11:822–829

    Article  PubMed  CAS  Google Scholar 

  • Espinoza CA, Goodrich JA, Kugel JF (2007) Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA 13:583–596

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JA, Kawahara T, Watanabe H, Yasui Y (2006) A SINE family widely distributed in the plant kingdom and its evolutionary history. Plant Mol Biol 61:505–514

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Fourrier N, Desmons I, Mouches C (2001) Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol Biol Evol 18:74–84

    Article  PubMed  CAS  Google Scholar 

  • Fleurdepine S, Deragon JM, Devic M, Guilleminot J, Bousquet-Antonelli C (2007) A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res 35:3306–3321

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Labuda D (1999) CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs. Proc Natl Acad Sci USA 96:2869–2874

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Labuda D (2000) Evolutionary inventions and continuity of CORE-SINEs in mammals. J Mol Biol 298:365–377

    Article  PubMed  CAS  Google Scholar 

  • Gong C, Maquat LE (2011a) “Alu”strious long ncRNAs and their role in shortening mRNA half-lives. Cell Cycle 10:1882–1883

    Article  PubMed  CAS  Google Scholar 

  • Gong C, Maquat LE (2011b) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288

    Article  PubMed  CAS  Google Scholar 

  • Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE (2009) SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev 23:54–66

    Article  PubMed  CAS  Google Scholar 

  • Goodier JL, Maraia RJ (1998) Terminator-specific recycling of a B1-Alu transcription complex by RNA polymerase III is mediated by the RNA terminus-binding protein La. J Biol Chem 273:26110–26116

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation; a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Hasler J, Strub K (2006) Alu RNP and Alu RNA regulate translation initiation in vitro. Nucleic Acids Res 34:2374–2385

    Article  PubMed  Google Scholar 

  • Irmer H, Hennings I, Bruchhaus I, Tannich E (2010) tRNA gene sequences are required for transcriptional silencing in Entamoeba histolytica. Eukaryot Cell 9:306–314

    Article  PubMed  CAS  Google Scholar 

  • Kachroo P, Leong SA, Chattoo BB (1995) Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc Natl Acad Sci USA 92:11125–11129

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111:433–444

    Article  PubMed  CAS  Google Scholar 

  • Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME, Ponicsan SL, Hauswirth WW, Chiodo VA, Kariko K, Yoo JW, Lee DK, Hadziahmetovic M, Song Y, Misra S, Chaudhuri G, Buaas FW, Braun RE, Hinton DR, Zhang Q, Grossniklaus HE, Provis JM, Madigan MC, Milam AH, Justice NL, Albuquerque RJ, Blandford AD, Bogdanovich S, Hirano Y, Witta J, Fuchs E, Littman DR, Ambati BK, Rudin CM, Chong MM, Provost P, Kugel JF, Goodrich JA, Dunaief JL, Baffi JZ, Ambati J (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471:325–330

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Khanam T, Rozhdestvensky TS, Bundman M, Galiveti CR, Handel S, Sukonina V, Jordan U, Brosius J, Skryabin BV (2007) Two primate-specific small non-protein-coding RNAs in transgenic mice: neuronal expression, subcellular localization and binding partners. Nucleic Acids Res 35:529–539

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Martignetti JA, Shen MR, Brosius J, Deininger P (1994) Rodent BC1 RNA gene as a master gene for ID element amplification. Proc Natl Acad Sci USA 91:3607–3611

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Furic L, Parisien M, Major F, DesGroseillers L, Maquat LE (2007) Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 26:2670–2681

    Article  PubMed  CAS  Google Scholar 

  • Kirby PJ, Greaves IK, Koina E, Waters PD, Marshall Graves JA (2007) Core-SINE blocks comprise a large fraction of monotreme genomes; implications for vertebrate chromosome evolution. Chromosome Res 15:975–984

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa N, Goto M, Kurozumi K, Maruo S, Fukayama M, Naoe T, Yasukawa M, Hino K, Suzuki T, Todo S, Takada K (2000) Epstein-Barr virus-encoded poly(A)(−) RNA supports Burkitt’s lymphoma growth through interleukin-10 induction. EMBO J 19:6742–6750

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AV, Kiefmann M, Ebnet K, Khanam T, Muddashetty RS, Brosius J (2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 353:88–103

    Article  PubMed  CAS  Google Scholar 

  • Kramerov DA, Vassetzky NS (2005) Short retroposons in eukaryotic genomes. Int Rev Cytol 247:165–221

    Article  PubMed  CAS  Google Scholar 

  • Kramerov DA, Vassetzky NS (2011) Origin and evolution of SINEs in eukaryotic genomes. Heredity 107:487–495

    Article  PubMed  CAS  Google Scholar 

  • Kremerskothen J, Nettermann M, op de Bekke A, Bachmann M, Brosius J (1998) Identification of human autoantigen La/SS-B as BC1/BC200 RNA-binding protein. DNA Cell Biol 17:751–759

    Article  PubMed  CAS  Google Scholar 

  • Laha T, McManus DP, Loukas A, Brindley PJ (2000) Sjalpha elements, short interspersed element-like retroposons bearing a hammerhead ribozyme motif from the genome of the oriental blood fluke Schistosoma japonicum. Biochim Biophys Acta 1492:477–482

    Article  PubMed  CAS  Google Scholar 

  • Lenoir A, Pelissier T, Bousquet-Antonelli C, Deragon JM (2005) Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss. Cytogenet Genome Res 110:441–447

    Article  PubMed  CAS  Google Scholar 

  • Liao C, Rovira C, He H, Edstrom JE (1998) Site-specific insertion of a SINE-like element, Cp1, into centromeric tandem repeats from Chironomus pallidivittatus. J Mol Biol 280:811–821

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Pestova TV, Hellen CU, Tiedge H (2008) Translational control by a small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol Cell Biol 28:3008–3019

    Article  PubMed  CAS  Google Scholar 

  • Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765

    Article  PubMed  CAS  Google Scholar 

  • Luchetti A, Mantovani B (2011) Molecular characterization, genomic distribution and evolutionary dynamics of Short INterspersed Elements in the termite genome. Mol Genet Genomics 285:175–184

    Article  PubMed  CAS  Google Scholar 

  • Lunyak VV, Prefontaine GG, Nunez E, Cramer T, Ju BG, Ohgi KA, Hutt K, Roy R, Garcia-Diaz A, Zhu X, Yung Y, Montoliu L, Glass CK, Rosenfeld MG (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317:248–251

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38(Suppl):S31–S36

    Article  PubMed  CAS  Google Scholar 

  • Maran A, Mathews MB (1988) Characterization of the double-stranded RNA implicated in the inhibition of protein synthesis in cells infected with a mutant adenovirus defective for VA RNA. Virology 164:106–113

    Article  PubMed  CAS  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    Article  PubMed  CAS  Google Scholar 

  • Martignetti JA, Brosius J (1993a) BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc Natl Acad Sci USA 90:11563–11567

    Article  PubMed  CAS  Google Scholar 

  • Martignetti JA, Brosius J (1993b) Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc Natl Acad Sci USA 90:9698–9702

    Article  PubMed  CAS  Google Scholar 

  • Mes JJ, Haring MA, Cornelissen BJ (2000) Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum. Mol Gen Genet 263:271–280

    PubMed  CAS  Google Scholar 

  • Moolhuijzen P, Kulski JK, Dunn DS, Schibeci D, Barrero R, Gojobori T, Bellgard M (2010) The transcript repeat element: the human Alu sequence as a component of gene networks influencing cancer. Funct Integr Genomics 10:307–319

    Article  CAS  Google Scholar 

  • Morl M, Marchfelder A (2001) The final cut: the importance of tRNA 3′-end processing. EMBO Rep 2:17–20

    Article  PubMed  CAS  Google Scholar 

  • Munemasa M, Nikaido M, Nishihara H, Donnellan S, Austin CC, Okada N (2008) Newly discovered young CORE-SINEs in marsupial genomes. Gene 407:176–185

    Article  PubMed  CAS  Google Scholar 

  • Nikitina TV, Tischenko LI, Schulz WA (2011) Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts. Biol Chem 392:395–404

    Article  PubMed  CAS  Google Scholar 

  • Nishihara H, Smit AF, Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 16:864–874

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Ohtsubo E, Ohtsubo H (1999) Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol Gen Genet 261:71–79

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Ohtsubo H, Ohtsubo E (2000) ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization. DNA Res 7:291–303

    Article  PubMed  CAS  Google Scholar 

  • Ogiwara I, Miya M, Ohshima K, Okada N (2002) V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res 12:316–324

    Article  PubMed  CAS  Google Scholar 

  • Ohshima K, Hamada M, Terai Y, Okada N (1996) The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol Cell Biol 16:3756–3764

    PubMed  CAS  Google Scholar 

  • Okada N, Sasaki T, Shimogori T, Nishihara H (2010) Emergence of mammals by emergency: exaptation. Genes Cells 15:801–812

    PubMed  CAS  Google Scholar 

  • Parrott AM, Tsai M, Batchu P, Ryan K, Ozer HL, Tian B, Mathews MB (2011) The evolution and expression of the snaR family of small non-coding RNAs. Nucleic Acids Res 39:1485–1500

    Article  PubMed  CAS  Google Scholar 

  • Piskurek O, Jackson DJ (2011) Tracking the ancestry of a deeply conserved eumetazoan SINE domain. Mol Biol Evol 28:2727–2730

    Article  PubMed  CAS  Google Scholar 

  • Ponicsan SL, Kugel JF, Goodrich JA (2010) Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genet Dev 20:149–155

    Article  PubMed  CAS  Google Scholar 

  • Pouch-Pelissier MN, Pelissier T, Elmayan T, Vaucheret H, Boko D, Jantsch MF, Deragon JM (2008) SINE RNA induces severe developmental defects in Arabidopsis thaliana and interacts with HYL1 (DRB1), a key member of the DCL1 complex. PLoS Genet 4:e1000096

    Article  PubMed  Google Scholar 

  • Rasmussen M, Rossen L, Giese H (1993) SINE-like properties of a highly repetitive element in the genome of the obligate parasitic fungus Erysiphe graminis f.sp. hordei. Mol Gen Genet 239:298–303

    PubMed  CAS  Google Scholar 

  • Rogers JH (1985) The origin and evolution of retroposons. Int Rev Cytol 93:187–279

    Article  PubMed  CAS  Google Scholar 

  • Roman AC, Gonzalez-Rico FJ, Molto E, Hernando H, Neto A, Vicente-Garcia C, Ballestar E, Gomez-Skarmeta JL, Vavrova-Anderson J, White RJ, Montoliu L, Fernandez-Salguero PM (2011) Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 21:422–432

    Article  PubMed  CAS  Google Scholar 

  • Roy AM, West NC, Rao A, Adhikari P, Aleman C, Barnes AP, Deininger PL (2000) Upstream flanking sequences and transcription of SINEs. J Mol Biol 302:17–25

    Article  PubMed  CAS  Google Scholar 

  • Rozhdestvensky TS, Kopylov AM, Brosius J, Huttenhofer A (2001) Neuronal BC1 RNA structure: evolutionary conversion of a tRNA(Ala) domain into an extended stem-loop structure. RNA 7:722–730

    Article  PubMed  CAS  Google Scholar 

  • Rubin CM, Kimura RH, Schmid CW (2002) Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res 30:3253–3261

    Article  PubMed  CAS  Google Scholar 

  • Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, Low MJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3:1813–1826

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Nishihara H, Hirakawa M, Fujimura K, Tanaka M, Kokubo N, Kimura-Yoshida C, Matsuo I, Sumiyama K, Saitou N, Shimogori T, Okada N (2008) Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci USA 105:4220–4225

    Article  PubMed  CAS  Google Scholar 

  • Schmid CW (1998) Does SINE evolution preclude Alu function? Nucleic Acids Res 26:4541–4550

    Article  PubMed  CAS  Google Scholar 

  • Sun FJ, Fleurdepine S, Bousquet-Antonelli C, Caetano-Anolles G, Deragon JM (2007) Common evolutionary trends for SINE RNA structures. Trends Genet 23:26–33

    Article  PubMed  Google Scholar 

  • Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    PubMed  CAS  Google Scholar 

  • Tu Z (1999) Genomic and evolutionary analysis of Feilai, a diverse family of highly reiterated SINEs in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 16:760–772

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Iacoangeli A, Lin D, Williams K, Denman RB, Hellen CU, Tiedge H (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171:811–821

    Article  PubMed  CAS  Google Scholar 

  • Watson JB, Sutcliffe JG (1987) Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol Cell Biol 7:3324–3327

    PubMed  CAS  Google Scholar 

  • Wenke T, Döbel T, Rosleff ST, Junghans H, Weisshaar B, Schimdt T (2011) Targeted identification os SINE (Short Interspersed Nuclear Element) families show their wide-spread existence and extreme heterogeneity in plant genomes. Plant Cell 23:3117–3128

    Article  PubMed  CAS  Google Scholar 

  • Whisson SC, Avrova AO, Lavrova O, Pritchard L (2005) Families of short interspersed elements in the genome of the oomycete plant pathogen, Phytophthora infestans. Fungal Genet Biol 42:351–365

    Article  PubMed  CAS  Google Scholar 

  • Wick N, Luedemann S, Vietor I, Cotten M, Wildpaner M, Schneider G, Eisenhaber F, Huber LA (2003) Induction of short interspersed nuclear repeat-containing transcripts in epithelial cells upon infection with a chicken adenovirus. J Mol Biol 328:779–790

    Article  PubMed  CAS  Google Scholar 

  • Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120

    Article  PubMed  CAS  Google Scholar 

  • Wilson ET, Condliffe DP, Sprague KU (1988) Transcriptional properties of BmX, a moderately repetitive silkworm gene that is an RNA polymerase III template. Mol Cell Biol 8:624–631

    PubMed  CAS  Google Scholar 

  • Yagi E, Akita T, Kawahara T (2011) A novel Au SINE sequence found in a gymnosperm. Genes Genet Syst 86:19–25

    Article  PubMed  CAS  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci USA 106:5569–5574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Cecile Bousquet-Antonelli, Nicolas Gilbert and Damian Labuda for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Deragon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deragon, JM. (2012). SINE Exaptation as Cellular Regulators Occurred Numerous Times During Eukaryote Evolution. In: Grandbastien, MA., Casacuberta, J. (eds) Plant Transposable Elements. Topics in Current Genetics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31842-9_13

Download citation

Publish with us

Policies and ethics