Skip to main content

Approximating the Rainbow – Better Lower and Upper Bounds

  • Conference paper
Computing and Combinatorics (COCOON 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Included in the following conference series:

Abstract

In this paper we study the minimum rainbow subgraph problem, motivated by applications in bioinformatics. The input of the problem consists of an undirected graph where each edge is coloured with one of the p possible colors. The goal is to find a subgraph of minimum order (i.e. minimum number of vertices) which has precisely one edge from each color class.

In this paper we show a \(\max(\sqrt{2p}, \min_q(q + \frac{\Delta}{e^{p q^2/\Delta n}}))\)-approximation algorithm using LP rounding, where Δ is the maximum degree in the input graph. In particular, this is a \(\max(\sqrt{2n}, \sqrt{2\Delta\ln{\Delta}})\)-approximation algorithm. On the other hand we prove that there exists a constant c such that the minimum rainbow subgraph problem does not have a cln Δ-approximation, unless NP ⊆ TIME(n O(loglogn)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Jiang, T., Miller, Z., Pritikin, D.: Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints. Random Structures & Algorithms 23(4), 409–433 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discrete Applied Mathematics 121(1-3), 15–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bland, R.G., Goldfarb, D., Todd, M.J.: The ellipsoid method: A survey. Operations Research 29(6), 1039–1091 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Camacho, S.M., Schiermeyer, I., Tuza, Z.: Approximation algorithms for the minimum rainbow subgraph problem. Discrete Mathematics 310(20), 2666–2670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Catanzaro, D., Labb, M.: The pure parsimony haplotyping problem: overview and computational advances. International Transactions in Operational Research 16(5), 561–584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P., Tuza, Z.: Rainbow subgraphs in edge-colorings of complete graphs. In: Kennedy, J.W., Gimbel, J., Quintas, L.V. (eds.) Quo Vadis, Graph Theory? A Source Book for Challenges and Directions. Annals of Discrete Mathematics, vol. 55, pp. 81–88. Elsevier (1993)

    Google Scholar 

  7. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gusfield, D.: Haplotype Inference by Pure Parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Hahn, G., Thomassen, C.: Path and cycle sub-Ramsey numbers and an edge-colouring conjecture. Discrete Mathematics

    Google Scholar 

  10. Hajiaghayi, M.T., Jain, K., Lau, L.C., Mandoiu, I.I., Russell, A., Vazirani, V.V.: Minimum multicolored subgraph problem in multiplex pcr primer set selection and population haplotyping. In: International Conference on Computational Science, vol. (2), pp. 758–766 (2006)

    Google Scholar 

  11. Huang, Y.-T., Chao, K.-M., Chen, T.: An approximation algorithm for haplotype inference by maximum parsimony. In: SAC 2005, pp. 146–150 (2005)

    Google Scholar 

  12. Hubbell, E.: Unpublished manuscript (2002)

    Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  14. Katrenič, J., Schiermeyer, I.: Improved approximation bounds for the minimum rainbow subgraph problem. Inf. Process. Lett. 111(3), 110–114 (2011)

    Article  Google Scholar 

  15. Koch, M., Camacho, S.M., Schiermeyer, I.: Algorithmic approaches for the minimum rainbow subgraph problem. Electronic Notes in Discrete Mathematics 38(0), 765–770 (2011)

    Article  Google Scholar 

  16. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem. Oper. Res. Lett. 34(3), 289–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rődl, V., Tuza, Z.: Rainbow subgraphs in properly edge-colored graphs. Random Structures & Algorithms 3(2), 175–182 (1992)

    Article  MathSciNet  Google Scholar 

  19. Simonovits, M., Sós, V.T.: On restricted colourings of K n . Combinatorica 4(1), 101–110 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Popa, A. (2012). Approximating the Rainbow – Better Lower and Upper Bounds. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics